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Risk Retirement

• What is “risk retirement”? 

§ For certain interactions, potential risks need not be fully investigated for every project for small 
developments (1-2 devices).

§ Rely on what is already known – already consented projects, research, or analogous industries.

§ A “retired risk” is not dead, and can be revived in the future as more information becomes available 
for larger arrays.
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Pathway to Risk Retirement
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Pathway to Risk Retirement

Define Interaction
• Project description 

(stressors)
• Marine animals or habitats 

(receptors)



5

Pathway to Risk Retirement

Stage Gate 1
• Define if likely / plausible 

risk exists
§ If not, risk can be retired
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Pathway to Risk Retirement

Stage Gate 2
• Determine if sufficient data 

exists to demonstrate risk is 
acceptable

§ If so, risk can be retired
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Pathway to Risk Retirement

Stage Gate 3
• Design studies and collect 

targeted project data
• Determine if risk is acceptable

§ If so, risk can be retired
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Pathway to Risk Retirement

Stage Gate 4
• Determine if proven 

mitigation measures are 
applicable to mitigate risk 

§ If so, risk can be retired
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Pathway to Risk Retirement

Stage Gate 5
• Develop and test novel 

mitigation measures
• Determine if the risk can be 

mitigated
§ If so, risk can be retired
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Pathway to Risk Retirement

End of Pathway
• If risk is likely / plausible and 

cannot be mitigated
§ Need to redesign or possibly 

abandon project
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Data Transferability Process
• Need to ensure datasets from permitted projects are readily 

available and able to be compared
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Information on 
Underwater Noise 
from MRE Devices

Sound recordings and data courtesy of 
Brian Polagye (PMEC), Teresa Simas, (WavEc), 
Juan Bald (BIMEP) and partners



13

Underwater Noise from MRE
Ø Anthropogenic noise from a variety of sources can: 

• Induce behavioral changes (i.e., avoidance/attraction)
• Cause physical harm 

Ø Shipping and other industries produce higher-amplitude noise (much louder) than MRE

Ø Offshore renewables: noise concerns from construction; operational noise likely to be much lower

Ø Unlikely for noise from MRE to cause harm to marine animals 
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Regulatory Thresholds

Ø Marine Mammals 
• NOAA Technical Guidance (2018)

Ø Fish
• NOAA Fisheries (salmon & bull trout)
• BOEM Underwater Acoustic Modeling 

Report (2013)

https://www.fisheries.noaa.gov/resource/document/technical-guidance-assessing-effects-anthropogenic-sound-marine-mammal
https://www.boem.gov/Renewable-Energy-Program/State-Activities/VA/2013-12-06_Appendix-M-2_VOWTAP-Underwater-Noise-Modeling-Report_FINAL.aspx
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Summary of noise measurements at MRE devices

• ANNEX IV State of the 
Science report (2016)

https://www.fisheries.noaa.gov/resource/document/technical-guidance-assessing-effects-anthropogenic-sound-marine-mammal
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Ø European Marine Energy Centre (EMEC), Fall of 
Warness, Orkney

Ø Noise from rotor, power take off
Ø Shipping noise generally 150-180 dB broadband

OpenHydro turbine at EMEC

(Polagye 2012, pers. com.)
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Ø Hawai’i Wave Energy Test Site (WETS), Kaneohe, O’ahu

Ø Point absorber, floating

Ø Shallow draft (0.5 m)

Ø Noise measurements (2016): 

• 3 seabed-mounted hydrophones (3 months)

• 2 drifting hydrophones (3 drifts)

Fred. Olsen Lifesaver at WETS

(Polagye et al. 2017, EWTEC)
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Fred. Olsen Lifesaver at WETS

PTO
(Standard Operation)
RL = 116 dB re 1μPa

50 Hz – 700 Hz

(Polagye et al. 2017, EWTEC)
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Fred. Olsen Lifesaver at WETS

Mooring
(Mechanical Contact)
RL = 124 dB re 1μPa

700 Hz – 5 kHz

(Polagye et al. 2017, EWTEC)
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Ø WavEc - Offshore Energy Test Site, Peniche

Ø Oscillating wave surge converter, bottom-mounted

Ø Noise measurements (2014): 

• 2 seabed-mounted hydrophones (24 h)

• Sound characterization & propagation measurements
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WaveRoller at WavEc
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IDOM’s MARMOK-A-5 at BiMEP
Ø Biscay Marine Energy Platform, Armintza test site

Ø Point absorber oscillating water column

Ø Noise measurements (2019): 

• 1 seabed-mounted hydrophone at ≈ 100 m from device

• Continuous recording for 44 days

(Bald 2019, pers. com.)
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Hearing thresholds for marine animals and 
underwater noise levels

(Scholik-Schlomer 2015)
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Information on EMF 
Impacts on Marine 
Animals from Exports 
Power Cables

Credit to Ann Bull, BOEM for many of the slides
And many many researchers
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Electromagnetic Fields

Ø Anthropogenic EMF signatures come from a variety of marine 
infrastructure (subsea cables, bridges, tunnels, etc.)

Ø MRE emits EMF signatures from power cables, moving parts of devices, 
and underwater substations or transformers

Ø May affect organisms that use natural magnetic field for orientation, 
navigation, and hunting

• Includes elasmobranchs, marine mammals, crustaceans, sea turtles, some 
fish species

Ø EMF-sensitive species are attracted to/or avoid sources
• But no demonstrable impact of EMF related to MRE devices on any 

sensitive marine species
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Electromagnetic Fields From AC and DC Power Cables
Ø Similar to cables used in the offshore wind industry

• Export cable is typically 13kV AC cable capable of up to 250MW
• Inter-array cables are typically 33kV AC cables
• Where possible, cables are buried to 1-3m depth
• Industry starting to use large DC cables for distances greater than 80km 

(less transmission loss)

Ø Cables used by MRE projects
• Size varies by project, but all smaller than typical wind
• Most common cable is 11kV AC, buried to 1m depth

Ø All cables are electrically shielded
• But the magnetic field is not blocked and generates an induced electric field

DC CableAC Cable
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EMF Fields Studies
EMF-sensitive fish response to EM emissions from subsea electricity cables

Ø West Scotland, 2007, 10-15m deep, 125 kV AC cable buried 0.5-1m

Ø Mesocosms with energized and control cables (3 trials)

Ø No evidence of positive or negative effect on catsharks (dogfish)

Ø Benthic elasmobranchs (skates) responded to EMF in cable
(Gill et al. 2009)

Sub-sea power cables and the 
migration behaviour of the European eel
Ø East Sweden, 2006, unburied 130 kV AC cable

Ø Used acoustic tags to track small movements of 60 
eels across energized cable

Ø Eels swam more slowly over energized cable

Ø Effect was small, no evidence of barrier effect
(Westerberg and Lagenfelt 2008) 
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EMF Fields Studies
Assessment of potential impact of electromagnetic fields (EMF) from 

undersea cable on migratory fish behavior

Ø West U.S., 2014, buried 200 kV DC cable

Ø HVDC cable in San Francisco Bay, parallel or perpendicular to green & white sturgeon, 
salmon, steelhead smolt migrations

Ø Tagged fish, magnetometer surveys

Ø Outcome – such large magnetic signatures from bridges, other infrastructure, could not 
distinguish cable!

Ø Fish did not appear to be affected
(Kavet et al., 2016)
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EMF Fields Studies
Behavioral responses by migrating juvenile salmonids to a subsea

high-voltage DC power cable

Ø West U.S., 2014, buried 200 kV DC cable

Ø Before and after energization of Trans Bay Cable (HVDC cable in San Francisco Bay)

Ø Tagged Chinook salmon smolts 

Ø Smolts successfully migrated through the bay before and after cable energization 
without significant differences

Ø Cable activity was not associated with the probability of successfully exiting the system, 
or crossing the cable location

(Wyman et al., 2018)
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EMF Fields Studies
Effects of EMF emissions from undersea electric cables 

on coral reef fish

Ø SE U.S., 2014, 5-15m deep, unburied cables

Ø Blind randomized sequence of ambient (OFF) and energized AC and DC (ON) cable 
power states

Ø In situ observations of fish abundance and behavior (“unusual” or unexpected 
movements or reaction)

Ø No behavioral changes were noted in immediate responses to alterations in EMF

Ø No statistical differences in fish abundance among the power states
(Kilfoyle et al., 2018)
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EMF Fields Studies
Potential impacts of submarine power cables on crab harvest

Ø NW U.S. and SW U.S., 2015, 10-13m deep, unburied 
power cables

Ø Will rock crab (Santa Barbara channel) and 
Dungeness crab (Puget Sound) cross a power cable?

Ø Rock crabs cross an unburied 35 kV AC power cable

Ø Dungeness crabs cross an unburied 69 kV AC power 
cable to enter baited commercial traps

(Love et al., 2017)
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EMF Fields Studies
Electromagnetic field impacts on elasmobranch and American 

lobster movement and migration from direct current cables

Ø NE U.S., 2016, 10m deep, buried 300 kV DC cable

Ø Determine if EMF-sensitive animals react to HVDC cable:

• Enclosures with animals using acoustic telemetry tags

Ø AC components measured from DC cable

Ø Lobster – statistically significant, but subtle change in behavior

Ø Skate – strong behavioral response, results suggested an increase in 
exploratory activity and/or area restricted foraging behavior with EMF

Ø EMF from cable didn’t act as a barrier to movement for either species
(Hutchison et al., 2018)
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