

Annex IV Environmental Research Webinar Series

Artificial Reefs and Benthic Changes in Relation to MRE

Ecological Consultants

Proudly Operated by Battelle Since 1965

Presenters

Sharon Hendrix Kramer

Marine Biologist/Fish Ecologist, H. T. Harvey & Associates

Olivia Langhamer

Research Fellow, Department of Energy and Environment, Chalmers University of Technology

Proudly Operated by Battelle Since 1965

Sharon Hendrix Kramer

Evaluating the Potential for Marine and Hydrokinetic Devices to Act as Artificial Reefs or Fish Aggregating Devices

H.T. HARVEY & ASSOCIATES

Ecological Consultants

Evaluating the Potential for Marine and Hydrokinetic Devices to Act as Artificial Reefs or Fish Aggregating Devices

Presented by Sharon Hendrix Kramer, Marine Biologist/Fish Ecologist OES Annex IV Webinar H. T. HARVEY & ASSOCIATES April 25, 2017

Ecological Consultants

Introduction

Information gaps identified through project permitting

•

 Surrogates help to understand effects

Potential Environmental Effects

Image provided by NNMREC/OSU

Artificial Reef/Fish Aggregating Device

Mooring lines, buoys, devices Fish aggregating device?

Anchors, foundations Artificial reef?

Surrogate Structures

Surrogate Studies Elucidate.....

- Fish assemblages
- Special-status fish interactions
- Ecological interactions
- Interactions/ocean processes
- Seasonality

Approach

- 1. Analyzed literature on surrogate structures in 4 regions: 3 off West Coast and 1 in Hawai'i.
- 2. Held guided discussions with subject matter experts.
- 3. Accounted for physical, bio, and structural variables.
- 4. Asked:
 - Do surrogate structures attract fish?
 - Which species? What about special-status species?
 - If attraction occurs, are there negative effects?
 - What variables are important in predicting effects?

Surrogate Structures: Southern California Bight

	Surrogate	# Sites
	Natural reefs	80+
OP DEB NR1/NR2 DEB NR1/NR2	Artificial reefs	21
OP OP DEB OP OP OP OP DEB OP OP OP ARA	Oil platforms	27
FAD2 200 m NR2 NR2 NR1 NR1 AR4	Mariculture net-pens	2
FAD2 NR1 TAD2 FAD2 NR1 TAD2 NR1 AR4 DEB AR5 OP NR1 California NR4 OP	Purpose-built FAD	10
CP NR1 CP NR1 CP NR1 CP NR1 FL1 FL1 AR4 AR4 AR4 AR4 AR4 AR4 AR4 AR4	Drift kelp, floating debris	50+
FL1 AR4/AR2 FL1 FL1	Marine debris	100+
Legend NR1 AR4/A DEB Marine Debris NR1 NR* Natural Reef AR* Artificial Reef OP Oil and Gas Platform NAR* Mariculture Facility FAD* Fish Aggregating Device FL* Drift Kelp and Floating Debris *Number corresponds to Surrogate ID in Table 2	R3	
Kilometers	MAR2	

Fish Association: Southern California Bight

	Position in Water Column		Affected by	Associated with Midwater/	
			Depth of Bottom Structure?	Surface Structure?	
Common Name	Juvenile	Adult	(Y/N)	(Y/N)	
Bocaccio	WC	В	Ν	Y	
Canary rockfish	WC	В	Y	Ν	
Cowcod	В	В	Y	Ν	
Yelloweye rockfish	В	В	Y	Maybe	
Pacific Ocean perch	В	В	Ν	Ν	
Steelhead	WC	WC	Ν	Ν	
Pacific bluefin tuna	WC	WC	Ν	Ν	

B = bottom; WC = water column

Surrogate Structures: Central California, Washington

Ecological Consultant

Fish Association: Central California, Washington

	Position in			Associated with
	Water Column		Affected by Depth	Midwater/
			of Bottom	Surface Structure?
Common Name	Juvenile	Adult	Structure? (Y/N)	(Y/N)
Green sturgeon	-	В	Y	Ν
Eulachon	WC	WC	Ν	Ν
Bocaccio	WC	В	Ν	Y
Chinook salmon	WC	WC	Ν	Ν
(Etc.)				

B = bottom; WC = water column

Surrogate Structures: Puget Sound

Surrogate	# Sites
Natural reefs	20+
Artificial reefs	23
Piers and docks	10+
Mariculture net-pens	1
Drift kelp, floating debris	2
Kelp beds	4

H. T. HARVEY & ASSOCIATES Ecological Consultants

Fish Association: Puget Sound

	Position in			Associated with
	Water Column		Affected by Depth	Midwater/
			of Bottom	Surface Structure?
Common Name	Juvenile	Adult	Structure? (Y/N)	(Y/N)
Green sturgeon	-	В	Ν	Ν
Eulachon	WC	WC	Ν	Maybe
Bocaccio	WC	В	Y	Ν
Chinook salmon	WC	WC	Ν	Ν
(Etc.)				

B = bottom; WC = water column

Surrogate Structures: Hawai'i

Incot

Surrogate	# Sites	2550 m FAD
latural reefs	9	FAD FAD FAD NR1 FAD NR1
Artificial reefs	3	FAD FAD NR1 FAD FAD NR1 FAD FAD FAD FAD AR2 NR1 FAD FAD
Mariculture net-pens	4	FAD FAD FAD FAD FAD FAD
ADs	60+	FAD FAD Hawall FAD AR1 FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD
		NR2 I I/ NR2 FAD
		Legend NR* Natural Reef AR* Artificial Reef FAD Fish Aggregating Device MAR* Mariculture Facility *Number corresponds to Surrogate ID in Table 11
H. T. HARVEY & ASSOCIATES Ecological Consultants		N 0 50 100 200 Kilometers

Fish Association: Hawai'i

			Affected by
	Position in	Affected by Depth of	Midwater/
	Water Column	Bottom Structure?	Surface Structure?
Common Name	(Juv. and Adult)	(Y/N)	(Y/N)
Silverjaw snapper	В	Y	Ν
Squirrelfish snapper	В	Y	Ν
Longtail snapper	В	Y	Ν
Pink snapper	В	Y	Ν
Von Siebold's	R	V	NI
snapper	U	I	I N
Brigham's snapper	В	Y	Ν
Hawaiian sea bass	В	Y	Ν

B = bottom; WC = water column

Resemblance of Surrogates to WECs/TECs by Subregion

	Resemblance of					
	Surrogate Structure to		Distribution and Quantity of			
	WEC	s/TECs	S	urrogate	e Structu	es
		Midwater/				
	Bottom	Surface		CA-	Puget	
Surrogate Structure	Structure	Structure	SCB	WA	Sound	Hawaiʻi
Natural reef	Low	n/a	High	High	High	High
Natural reef/kelp bed	Low	Low	High	High	High	None
Artificial reef	Low	n/a	High	Low	High	High
Artificial reef/kelp bed	Low	Low	High	Low	High	None
Oil and gas platform	High	Low	High	None	None	None
Marine debris	Low	n/a	Low	Low	None	None
Mariculture net-cage	High	High	Low	None	Low	Low
Purpose-built FAD	High	High	Low	Low	None	High
Drift kelp, floating debris	n/a	Low	Low	None	Low	None
Piers and docks	High	Low	None	Low	High	None

Findings

Ecological Consultants

Findings

• Uncertainties:

- FAD effect in temperate waters?

- Effects of installation scale?
- Adverse effects on special-status fish unlikely.

Kelp bass, Paralabrax clathratus, Platform Gina, © James Forte

Inform Permitting

- Provide supporting information to:
 - address uncertainties that can hold up permitting
 - support analysis of effects for NEPA and ESA documents
- Focus monitoring to address anticipated effects:
 - build on understanding as projects are built
 - minimize need for extensive monitoring at every project

Acknowledgements

Funding provided by the U.S. Department of Energy and Bureau of Ocean Energy Management

Science Advisors: Dr. Pete Nelson, David Itano

Contributing Experts

Dr. David Ainley, H. T. Harvey & Associates Dr. Larry Allen, California State University, Northridge John Childers, NOAA Alan Everson, NOAA Robert Hannah, Oregon Department of Fish and Wildlife Dr. Kim Holland, Hawai'i Institute of Marine Biology Gavin Key, Kampachi Farms, LLC Robert Pacunski, Washington Department of Fish and Wildlife Franklin Parker, U.S. Coast Guard Eric Pedersen, Pacifico Aquaculture Michael Prall, California Department of Fish and Wildlife Neil Sims, Kampachi Farms, LLC Richard Stevenson, Commercial Fisherman (retired) Dr. Brian Tissot, Humboldt State University

For More Information

Dr. Sharon Hendrix Kramer 707.822.4141 ext. 101 skramer@harveyecology.com www.harveyecology.com

Link to report: http://tethys.pnnl.gov/publications/evaluating-potentialmarine-and-hydrokinetic-devices-act-artificial-reefs-or-fads or http://www.boem.gov/2015-021/

Proudly Operated by Battelle Since 1965

Olivia Langhamer

Reef effects of offshore wind and wave power parks - Swedish case studies

H.T. HARVEY & ASSOCIATES

Ecological Consultants

CHALMERS UNIVERSITY OF TECHNOLOGY

Reef effects of offshore wind and wave power parks -Swedish case studies

OLIVIA LANGHAMER PHD Department of Energy and Environment

Annex IV webinar, 25.4.2017

Research interests

Marine renewable energy conversion and the marine environment

- Earlier work:
 - Wave Energy Conversion and the Marine Environment. Colonization Patterns and Habitat (PhD, Uppsala University, Sweden)
 - Population dynamics in an offshore wind park (Statkraft postdoc, Norwegian University of Science & Technology)

Photo: O.Langhamer

Marine biodiversity is under severe pressure

- Habitat destruction
- Fragmentation and degradation
- Over-exploitation & non-sustainable practices
- Eutrophication
- Invasive species
- Climate change & ocean acidification
- Pollution

Artificial Reefs

Submerged structures deliberately placed on the seabed to mimic some functions of a natural reef such as protecting, regenerating, concentrating and/or enhancing population of living marine resources (UNEP 2009)

Reasons for deploying ARs

- Enhance fisheries (e.g. Seaman et al. 1991)
- Protection of fish stocks/habitats (e.g. Jensen 2002)
- Restoring marine habitats (including spawning areas) (e.g. Clark & Edwards 1995)
- Create sites for recreational diving and fishing (e.g. Wilhelmsson et al. 1998)
- Research (e.g. Seaman et al. 1991)

www.reefball.org

www.hammerfest.kommune.no

CHALMERS ARs & colonization: influencing factors

- Reef location, isolation (McArthur & Wilson 1967, Moffit et al. 1989)
- Reef height (Jesse et al. 1985, Rilov and Benayahu 2002)
- Complexity (Sale 1974)
- Reef size (Ambrose & Swarbrick 1989)
- Epibiota , biofouling organisms (Bailey-Brock 1989)
- Surrounding habitat (Einbeinder 2006)

www.urbanghostsmedia.com

www.toxipedia.org

www.reefball.org

www.hammerfest.kommune.no

Offshore wind and wave power installations as secondary artificial reefs?

Lysekil Wave Power Research Site

Lillgrund Offshore Wind Farm

Lysekil Research questions

- What are the effects of wave power foundations on benthic species distribution patterns of mobile organisms in this area?
- To what extend will the deployment of wave power foundations on barely sandbottoms affect local distribution patterns of motile species?
- What are the effects of low-cost enhancements of shelter availability and compartment through holes?

Photo: O.Langhamer

Photo: O.Langhamer

Lysekil: Experimental setup

Mean abundance of benthic species recorded on wave power foundations in 2007

Таха		Foundations	Foundations	Foundations	Control
Common name	Latin name	without holes	with holes		
Echinoderms					
Spiny seastar	Marthaserias glacialis	1,4	0,18	0,76	-
Common starfish	Asterias rubens	0,1	0,09	0,10	0,10
Sand star	Astropecten irregularis	0,2	-	0,10	1,8
Decapods					
Norwegian lobster	Nephrops norvegicus	-	0,09	0,05	-
European lobster	Homarus gammarus	-	0,09	0,05	-
Hermit crab	Pagarus bernardus	0,9	0,82	0,86	1,52
Harbour crab	Liocarcinus depurator	0,9	0,82	0,86	0,95
Edible crab	Cancer pagurus	0,9	4,82	2,95	-
Great spider crab	Hyas araneus	0,2	0,09	0,14	0,10
Fish					
Cod	Gadus morhua	0,3	0,18	0,24	-
Juvenile codfish	Gadidae	0,3	0,09	0,19	-
Pipefishes	Nerophis spp.	-	0,09	0,05	-
Bullrouts	Cottidae	0,1	0,09	0,10	-
Goldsinny wrasse	Ctenolabrus rupestris	0,1	0,09	0,10	-
Rock gunnel	Pholis gunnellus	0,1	0,18	0,14	-
Sand goby	Pomatochistus minutus	0,2	-	0,10	0,10
Dragonets	Callionymus spp.	0,1	0,18	0,14	0,38
Flatfishes	Pleuronectidae	0,2	-	0,10	0,10

Fish abundance and number of species observed in the Lysekil wave power site

Colonization patterns of edible crab

Overview over microhabitat used by average number \pm SE of edible crabs on foundations.

The potential for Wave Energy Devices to Provide Artificial Habitats and Protect Areas from Fishing.

Organisms	Seabased	Pelamis	Wavebob
Benthic fish	+ (foundation+ generator	0 (embedded anchor)	+ (suction anchor+ "floating reef")
Pelagic fish (FAD)	++ (large number +/-)	++ (large horizontal shelter)	++ (sticks deep)
Crustaceans	++ (respond stronger than fish, but most at shallow sites)	0	+ (suction anchor+ "floating reef")
Blue mussels	++	+++ (large surface)	+++ (rel. large and dense surface)

In: Wilhemsson D, Langhamer O. 2010. Report, IUCN/Vattenfall AB

Offshore wind and scour protection

(adapted from Wilson & Elliott 2009)

In: Langhamer 2012. Scientific World Journal

Species aggregation around offshore wind turbines

Monopiles with scour protection:

Pouting (Reubens et al. 2011) Cod (Couperus et al 2010)

Monopiles without scour protection:

Benthic fish species/assemblages (Wilhelmsson et al. 2006)

Gravity based foundations:

European eel, cod, short-horn sculpin, goldsinny wrasse (Bergström et al. 2012)

Eelpout (Bergström et al. 2012, Langhamer et al. in prep.)

Shore crabs (Bergström et al. 2012, Langhamer et al. 2016)

Population studies on shore crabs and viviparous eelpout in relation to offshore renewable energy installations (OWF)

- capture-mark recapture study fyke nets
- estimating population size and density, morphological characteristics, sex determination for crabs and condition
- o CI, HIS, GSI and brood analyses for female eelpout

Photo: O.Langhamer

Effects of an OWF on *C. maenas*

Figure 2. Calculated mean± SE in catch per unit effort (CPUE) of the common shore crab, *Carcinus maenas* in Lillgrund wind park and the two control sites Bredgrund and Sjollen in 2011 and 2012. Letters above bars indicate significantly different means based on Tukey's post-hoc comparisons.

Figure 3A. Calculated mean± SE in carapace size of the common shore crab, *Carcinus maenas* in Lillgrund wind park and the two control sites Bredgrund and Sjollen in 2011 and 2012. Letters above bars indicate significantly different means based on Tukey's post-hoc comparisons.

(Langhamer et al. 2016. Plos-One)

CHALMERS

Effects of an OWF on *Z. viviparous*

(Langhamer et al. in prep.)

References

- Langhamer O, Holand H, Rosenqvist G. 2016. Effects of an Offshore Wind Farm (OWF) on the Common Shore Crab Carcinus maenas: Tagging Pilot Experiments in the Lillgrund Offshore Wind Farm (Sweden). PLoS ONE 11(10): e0165096. https://doi.org/10.1371/journal.pone.0165096
- Wilhelmsson D., Langhamer O. 2014. The Influence of Fisheries Exclusion and Addition of Hard Substrata on Fish and Crustaceans. In: *Marine Renewable Energy Technology and Environmental Interactions*. (Shields & Payne eds.), pp. 49-60. Springer
- Langhamer O. 2012. Artificial reef effect in relation to offshore renewable energy conversion: state of the art. Scientific World Journal. Volume 2012. 8 pages.
- Wilhemsson D, Langhamer O. 2010. The potential for Wave Energy Devices to Provide Artificial Habitats and Protect Areas from Fishing. IUCN/Vattenfall AB, 87 pp.
- Wilhelmsson D., Langhamer O, Tchou J. 2010. Brief on wave, tidal and current power In: *Greening Blue Energy; Identifying and managing the biodiversity risks and opportunities of offshore renewable energy,* (Wilhelmsson et al. eds.), pp. 67-75. IUCN, Gland.
- Langhamer, O, Haikonen, K and Sundberg, J. 2010. Wave power-sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renewable and Sustainable Energy Reviews 14, 1329-1335.
- Langhamer O, Wilhelmsson D 2009. Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes a field experiment. Marine Environmental Research 68(4), 151-157.
- Langhamer O. 2009. Wave energy conversion and the marine environment: Colonization patterns and habitat dynamics. PhD Thesis, ISBN: 978-91-554- 7581-9. ISSN: 1651-6214.

Thank you for your attention!

contact: olivia.langhamer@chalmers.se

Questions?

Proudly Operated by Battelle Since 1965

Questions & Answers

THANK YOU!

Recordings of presentations will be posted on Tethys at: https://tethys.pnnl.gov/environmental-webinars?content=water

- Information on previous and upcoming Annex IV webinars
- Watch for announcements on *Tethys* and your email for the next Annex IV webinar
- For those of you who are not on the webinar mailing list, visit <u>https://tethys.pnnl.gov/tethys-blasts/join</u>

Andrea Copping (<u>Andrea.Copping@pnnl.gov</u>) Jonathan Whiting (<u>Jonathan.Whiting@pnnl.gov</u>) Mikaela Freeman (<u>Mikaela.Freeman@pnnl.gov</u>) Nikki Sather (<u>Nichole.Sather@pnnl.gov</u>)

