Filling Data Gaps on EMF and Marine Organisms

m

Ann Scarborough Bull, Ph.D.

Bureau of Ocean Energy Management, Pacific Region

Tethys Annex IV Environmental Webinar May 7, 2015

BOEM Program Goals for Ocean Energy Studies

- Acquire the information needed for assessment and management of environmental impacts.
 - Predict impacts on the marine biota
 - Monitor human, marine, and coastal environments

BOEM-Supported Efforts Filling Data Gaps Pacific Coast

EMF Studies

3 BOEM-Funded Pacific Studies Related to EMF

- #1 Completed Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species <u>www.data.boem.gov/PI/PDFImages/ESPIS/4/5115.pdf</u>
- #2 Summer 2015 Renewable Energy in situ Power Cable Observation www.boem.gov/pc-11-03/
- #3 Summer 2017 Potential Impacts of Submarine Power Cables on Crab Harvest

www.boem.gov/pc-14-02/

BOEM-Supported Efforts Filling Data Gaps Pacific Coast Study #1

Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species

What does the literature say?

Methods:

Table 4.2-1

EMF Study #1

Listing of elasmobranch species for which information on sensitivity to electric or magnetic fields has been reported.

Species ^a	Common Name	US ?b	Sensitivity	Sensory Range	Evidence Basis	Citation
Class Chondrichthyes,	Subclass Elasmobi	ranchii: s	harks, skates,	and rays		
Order Orectolobiformes, Family Ginglymostomatidae: nurse sharks						
Ginglymostoma cirratum	nurse shark	US	E	frequency: DC fields and AC fields <1.6 Hz	Behavioral	Johnson et al. 1984
Order Lamniformes, Family Lamnidae: mackerel sharks						
Carcharodon carcharias	white shark	US	E/M?	geomagnetic field/electric field sensitivity n/a	Behavioral/ observational/ anatomical/ theoretical	Klimley et al. 2002, Tricas 2001, Tricas and McCosker 1984
Isurus oxyrinchus	shortfin mako	US	E/M?	geomagnetic field/electric field sensitivity n/a	Behavioral/ observational	Klimley et al. 2002
Order Carcharhiniform	nes, Family Scylior	hinidae:	cat sharks			
Cephaloscyllium isabellum	carpet shark	Not in US	Е	2µV/cm	Physiological/ behavioral	Bodznick and Montgomery 1992, Yano et al. 2000
Cephaloscyllium ventriosum	swell shark	US	Е	n/a	Behavioral	Tricas 1982
Scyliorhinus canicula	small-spotted cat shark	Not in US	E	0.01 to 0.1 μV/cm	Behavioral/ physiological	Filer et al. 2008, Gill and Taylor 2001, Gill et al. 2009, Kalmijn 1966, Kalmijn 1971, Kimber et al. 2009, Pals et al. 1982a, Peters and Evers 1985
Scyliorhinus torazame	cloudy catshark	Not in US	E	0.2-10V and 0.1- 5A, DC	Behavioral	Yano et al. 2000

Model:

EMF Study #1

Adapted from Normandeau et al. (2011)

Appendix Table B-1. Summary of information on existing and proposed undersea power cables.

EMF Study #1

Existing and proposed undersea power cables.

						-		Maximum		
		a .			Length	Frequency	Voltage	Capacity	C 1 a	Marine
Year	Name	Country		waterway	(K m)	(HZ)	(KV)	(MW)	Calcs	Assess
Existing	Existing Power Cables									
1969	1385 Line Cable	US	Norwalk, CT	Norwalk	11.7	60	138	300	-	-
	System (NU/LIPA		Northport, NY	Harbor/Long						
				Island Sound						
1996	Nantucket Cable #1	US	Harwich, MA	Nantucket Sound	26	60	46	35	Y	Ν
			Nantucket Is, MA	(Horseshoe						
				Shoal)						
1998	Haines Scagway	US	Haines, AK	Taiya Inlet	24.2	60	35	15	-	-
	Submarine Cable		Skagway, AK							
	Intertie Project									
2000	SwePol Link	SW/POL	Karlshamm,	Baltic Sea	245 km	0	±450	600 Max	Y	-
			Sweden							
			Slupsk, Poland							
2001	?	US	Galeveston, TX	?	?	60	138	200	?	?
			Galeveston Island,							
			TX							
2002	Replacement of	US	Norwalk, CT	Norwalk	17.7	60	138	300	Y	Y
	138kV Submarine		Northport, NY	Harbor/Long						
	Electric Transmission			Island Sound						
	Cable System									
2002	Cross Sound Cable	US	New Haven, CT	Long Island	38.6	0	± 150	330	Y	Y
			Brookhaven, NY	Sound						
2002	San Juan Cable	US	Fidalgo Island	Puget Sound	13.5	60	69		-	-
	Project		Lopez Island							
2003	Nysted Offshore	DE	Baltic Sea	Baltic Sea	48 km	50	33 to 132	165.6	-	Y
	Wind Farm		Nysted, Denmark							

Some Findings from Literature Study

- Anticipated EMFs from power cables can be modeled easily <u>if</u> specific information is available:
 - Cable design
 - Burial depth and layout
 - Magnetic permeability of the sheathing
 - Loading
- Behavioral responses to and some effects from electro- or magnetic fields are known for a few species; extrapolation to many other species or to population impacts is speculative.

BOEM-Supported Efforts Filling Data Gaps Pacific Coast Study #2

Renewable Energy *in situ* Power Cable Observation

Does EMF from a power cable attract/repulse fish or invertebrates?

Objectives:

- Measure the strength, spatial extent, and variability of EMFs along both energized and unenergized cables.
- Determine attraction/repulsion of fish and macroinvertebrates to the EMF from the power cables.
- Determine the effectiveness of the commonly proposed mitigation of cable burial.

Identical 35 kV AC Power Cables

Methods:

11-13 m depth

Video Surveys using Sub

30-150 m depth

Methods:

Pipeline as Proxy for Unenergized Cable in Shallow Water Surveys

Some Findings from in situ Study

EMF Study #2

Mean EMF readings in μT

	SCUBA 11-13 m	Submersible 100-200 m
On Pipeline	0.5 μΤ	NA
On Cable	112 μΤ	109 µT
At ~0.5 m	2 μΤ	3 μΤ
At ~1 m	0.3 μΤ	0.2 μΤ
On Mud/Sand	0.0 μT	~0.05 μT

Some Findings from *in situ* Study – Shallow Water Depth

EMF Study #2

Average Number of Fishes Observed in Cable, Pipe, and Sand Habitats Per Survey Date from May through August 2012

Multidimensional Scaling All Fish Species – By Habitat May through August 2012

Some Findings from in situ Study – Deepwater Depth

Multidimensional Scaling All Fish Species – By Habitat From 1-2 Years of Submersible Dives

EMF Study #2

Invertebrate Density 16 Species

EMF Study #2

Preliminary Findings from *in situ* Study

EMF Study #2

Unpublished Results from 1-2 Years of Surveys Final Analyses (from All Years) will Clarify Conclusions

- Results suggest no response (attraction/repulsion) from fish or macroinvertebrates to EMF from a 35 kV AC *in situ* power transmission cable.
- Differences in invertebrate communities may be associated with sediment characteristics close to the cable and their patchy nature of distribution.
- Actual EMF measured on the cables and away from cable output closely fits the model results found in EMF Study #1.
- Apparent lack of response would indicate burial is not always essential for biological reasons.
- The results will be published in scientific journals and issued as a 2015 BOEM report.

BOEM-Supported Efforts Filling Data Gaps Pacific Coast Study #3

Potential Impacts of Submarine Power Cables on Crab Harvest

Will EMF from a power cable affect commercial crab harvest?

Objectives:

Determine if rock crab and dungeness crab will cross a power cable and be caught in commercial baited traps.

Determine likely impact on harvest for assessment documents and planning.

Potential Impacts of Submarine Power Cables on Crab Harvest

Will two crab species cross a power cable into a baited trap?

Methods:

- Use commercial crab fishermen and species.
- Determine the *in situ* EMF at AC and DC submarine cables.
- Expose rock crabs to 35 kV power cable with response choice in Santa Barbara Channel.
- Expose dungeness crabs to HVDC and/or AC power cables with response choice in Puget Sound.

Rock Crab Experimental Design for Santa Barbara Channel

EMF Study #3

Give Crabs a Choice to Decide if They will Cross a Power Cable in Response to a Baited Commercial Fishing Trap

Rock Crab Experimental Design for Santa Barbara Channel

Give Crabs a Choice to Decide if They will Cross a Power Cable in Response to a Baited Commercial Fishing Trap

Preliminary Findings from Potential Effects on Crab Harvest Study

EMF Study #3

Unpublished Results from 332 Rock Crab Experiments

- Results suggest rock crabs will cross an unburied 35 kV AC power cable to enter baited commercial traps.
- The results will be published in scientific journals and issued as a 2017 BOEM report.

Contact Information

Ann Scarborough Bull, Ph.D.

Chief, Environmental Sciences Section Bureau of Ocean Energy Management Pacific OCS Region 805-384-6385 <u>ann.bull@boem.gov</u>

www.boem.gov

www.boem.gov/Pacific-Region/

www.boem.gov/Pacific-Studies/

Our thanks to Nikola Tesla

MINT