

Annex IV Case Studies

#1 - Interaction of Marine Animals with Turbine Blades

#2 - Effects of Acoustic Output from Tidal and Wave Devices on Marine Animals

#3 - Effects on Physical Systems

Purpose and Process for developing the Case Studies

- Specific interactions of marine energy devices with the marine environment
- Criteria for choosing the Case Studies:
 - The topic must be a common environmental concern or questions among multiple nations;
 - The topic must be raised as a significant issue in permitting (consenting) of marine energy sites in more than one nation; and
 - There must be sufficient information available to make an assessment.
- Information gathered from all available sources, evaluated to provide an understanding of the state of the science for each topic.

Major sources:

- Scientific papers and technical reports
- Annex IV metadata forms where no published reports available,
- Each source has been documented and appears in the Annex IV database.

Pacific Northwest NATIONAL LABORATORY

Purpose and Process for developing the Case Studies (cont'd)

Each case study includes:

- Problem statement
- Available evidence from monitoring and/or research studies,
- Discussion of lessons learned and
- Data gaps
- References cited

Proudly Operated by **Battelle** Since 1965

Annex IV Case Study #1

Interaction of Marine Animals with Turbine Blades

Case Study #1 Objectives

- 1. Identify tidal and in-stream monitoring data on marine animal interactions with turbine blades;
- 2. Collect information from laboratory flume and tank studies, and numerical modeling studies that inform the interaction of marine animals with turbine blades;
- 3. Evaluate this information from different projects to determine interactions between marine animals and turbine blades; and
- 4. Identify key gaps in data and studies.

Lines of Evidence CS#1

- Field Studies
 - SeaGen observations of marine mammals in Strangford Lough, Northern Ireland (MCT)
 - Observations of fish around a tidal turbine in Cobscook Bay, Maine, USA (ORPC)
 - Fish passage through a hydrokinetic river turbine on the Mississippi River, USA (Hydro Green)
 - Video observations of fish around a tidal turbine at the European Marine Energy Center, Scotland (OpenHydro)
 - Acoustic measurements of fish and birds around tidal turbines, New York, USA (Verdant)
- Laboratory Experiments
 - Alden Lab flume studies
 - Conte Lab open water flume studies
- Modeling encounters between Animals and Hydrokinetic Turbines
 - Fish and Harbor Porpoise Encounter Model (SAMS)
 - Estimating the consequences of encounter with a tidal turbine (PNNL/SNL)

Pacific Nor

Conclusions CS#1

- No evidence to date suggests direct interaction of marine mammals, birds, or fish with tidal turbine blades likely to be a significant problem.
- Attraction of animals to turbines could increase risk of direct effects (strike, entrainment) that affects feeding, mating and reproduction.
- Data collected from short pilot-scale deployments may not scale easily to large long term commercial deployments.
- Modeling needed to simulate the physics and biological interactions to design laboratory and field experiments, with special emphasis on incorporating behavioral responses of animals.
- Monitoring around multi-turbine arrays needed for information on encounters with animals, to understand the cumulative and additive effects of commercial scale developments.

Data Gaps CS#1

- Lack of observations and measurements of animal movement around tidal turbines of varying designs, in specific waterbodies.
- For example, need data with indigenous animals, that examines:
 - Open bladed and ducted tidal turbines;
 - Size of tidal turbine versus deployment depth;
 - Rotational speed of the turbine;
 - Solidity of the turbine;
 - Foundation or anchor structural design and materials;
 - Acoustic signature of the device (as a potential acoustic deterrent); and
 - Associated deterrents such as pingers or noisemakers.
- Need additional laboratory experiments with fish (other species) and turbines, where fish can make choices
- Modeling explicit for physical and biological interactions to determine outcome of encounters
- Field measurements of animals encounters with arrays

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Baffelle Since 1965

Annex IV Case Study #2

Effects of Acoustic Output from Tidal and Wave Devices on Marine Animals

Case Study #2 Objectives

- 1. Identify tidal and wave monitoring data on effects of acoustics on marine animals;
- Collect information from laboratory flume and numerical modeling simulations, that informs the effects of acoustics from tidal and wave systems on marine animals;
- Evaluate this information from different projects to determine the effects of acoustics on marine animals; and
- 4. Identify key gaps in data and studies.

Pacific Northwest NATIONAL LABORATORY

Lines of Evidence CS#2

Field Studies

SeaGen measurement of acoustic effects on marine animals in Strangford Lough, Northern Ireland (MCT)

- Ambient Noise
- Construction Noise
- Operational Noise
- Perceived Noise by Marine Animals
- Acoustic monitoring around a tidal turbine in Cobscook Bay, Maine, USA (ORPC)
 - Measuring sound from a pilot turbine deployment
 - Sound from pile driving to install turbines
- Measuring sound around tidal turbines, New York, USA (Verdant)
- Measuring sound around a 1/7th scale wave energy converter in Puget Sound, USA (CPT)
- Measuring and evaluating the acoustic environment in a tidal deployment area, Admiralty Inlet, USA (UW/SnoPUD) Pacific Northwest

NATIONAL LABORATORY

Lines of Evidence CS#2 (cont'd)

Laboratory Experiments

- Measuring tidal turbine noise in a flume (Univ Newcastle)
- Examining the effects of fish exposed to turbine noise, USA (PNNL)
- Modeling effects of noise from tidal turbines and wave energy converters
 - Modeling acoustic signature of wave energy converters, Portugal (WEC)
 - Modeling effects of acoustics from arrays of tidal and wave devices, Scotland
 - Identifying the noise from a Pelamis wave device, Scotland (QinetiQ)
 - Developing an acoustic signature for a hydrokinetic turbine, USA (SNL/PSU)
 - Field calibration of acoustic models for noise prediction, Portugal (Univ Algarve)
 - Modeling acoustics to develop mitigation for marine mammals, USA (OSU/PEV)

Pacific Nort NATIONAL LABORATORY

Conclusions CS#2

- Field deployments needed to measure ambient sound and propagation potential in water body prior to deployment, to accurately measure the sound of the operational device;
- Observations of animals around devices should be documented using multiple methods such as observers, passive and active acoustics, satellite tags and aerial surveys;
- Dose/response relationships are needed to understand the amplitude and frequencies of sounds that elicit reactions in animals;
- Must validate assumptions about the additive or multiplicative effects of acoustic outputs over single devices must be validated with field data, as arrays of devices are deployed,
- Investigations of acoustic outputs and its effects are needed for a range of tidal and wave energy devices, as well as the anchors, moorings, and foundations.

Pacific NATIONAL LABORATORY

- Need information on sound propagation potential within waterbodies (i.e.Strangford Lough) and uncertainty of effect on marine animals of sound propagation from turbines.
- Reconciliation of observations of animals near devices with sound levels expected to deter the animals (dB hearing threshold for marine species)
- Need proof to classify and evaluate the effect of marine energy devices on animals.
- Field deployments that measure:
 - Ambient sound field and propagation potential of the waterbody
 - Sound of the operational device
 - Observations of animals around device using multiple
 - Dose/response relationships for amplitude and frequencies of sounds that elicit reactions in animals of concern
 - Acoustic output and effects over a range of tidal and wave energy devices including various anchoring, mooring, and foundation systems

Pacific Northw NATIONAL LABORATORY

Proudly Operated by **Baffelle** Since 1965

Annex IV Case Study #3

Effects on Physical Systems

Case Study #3 Objectives

- 1. Identify tidal and wave monitoring data that determine physical changes in the environment;
- 2. Collect information from laboratory flume and numerical modeling simulations that informs the potential effects on the physical environment from tidal and wave systems;
- 3. Evaluate this information from different projects to determine potential effects on the physical marine environment; and
- 4. Identify key gaps in data and studies.

Lines of Evidence CS#3

- Few field measurements, few validated modeling efforts
- Largely numerical models to predict changes
- Field Studies
 - Water velocity measurements around the SeaGen turbine in Strangford Lough, Northern Ireland (MCT)
 - Measuring water velocity around tidal turbines, New York, USA (Verdant)
- Modeling Studies
 - Wave energy models developed in European waters
 - Wave energy models developed in North American waters
 - Tidal energy models developed in European waters
 - Tidal energy models developed in North American waters

Pacific NATIONAL LABORATORY

Conclusions CS#3

- The large temporal and spatial scales present five specific measurement challenges for research:
 - Model validation
 - Turbulence
 - Effects from specific marine energy devices
 - Coupling the nearfield with the farfield
 - Cumulative effects
- Modeling results indicate that nearfield changes are not likely at the small pilot scale but could occur at large commercial scales;
- It is not known if a tipping point exists for farfield changes that might affect the overall waterbody;
- Need better measurements of turbulence and inflow to devices for estimating environmental changes (as well as power resource potential). Need more specialized instrumentation for this.

- Field data collection for model validation
- Measurements of turbulence
- Energy removal effects from specific marine energy devices
- Modeling to couple nearfield effects with farfield effects
- Modeling cumulative effects of changes in water flow, sediemnt transport, ecosystem effects

Breakout Groups for Case Studies

- Structure:
 - Three breakout groups, chosen (more or less) for expertise, interest
- Purpose:
 - Obtain feedback on the overall content and interpretation of case study
 - Discuss future case studies: utility, topics
 - Detailed feedback should be provided in writing
 - Begin discussion of future of Annex IV
- Process:
 - 60 minutes to review at high level, focus on future case studies, Annex IV activities
 - Facilitator and recorder in each group
- Outcome
 - Guidance for correcting/enlarging content and interpretation of case study
 - Suggestions for future case studies
 - Potential new directions, activities under Annex IV

Pacific No

Thank you!

Proudly Operated by **Battelle** Since 1965

Andrea Copping Pacific Northwest National Laboratory andrea.copping@pnnl.gov 206.528.3049

