Laboratory Evaluation of the Effects of Turbine Noise on Fish

MICHELE HALVORSEN
TOM CARLSON
ANDREA COPPING

Pacific Northwest National Laboratory
Marine Sciences Laboratory, Sequim and Seattle, WA

Recent Developments in Research on the Environmental Effects of MHK Technologies
Washington DC
April 9th 2013
Components of Underwater Noise

Sound energy can cause damage based on:
- Frequency
- Intensity
- Spectrum

Two components of any sound wave:
- Pressure
- Particle motion

Near field (pressure & particle motion)
Far field (mostly pressure, but some motion)
- All fish can acoustically detect particle motion
- Some fish are acoustically sensitive to pressure

- Marine energy development raises concerns about noise impacts on fish:
- Typical assessments to determine harm include:
 - Auditory – hearing shift
 - Barotrauma – tissue/organ damage
Auditory

- Changes in hearing threshold
- Masking

Salmon: Halvorsen et al., 2009; Bass: Holt et al., 2010; Dab: Chapman & Sand 1973; Karl von Frisch - ear
Barotrauma is tissue injury caused by rapid pressure changes

Impulsive Sounds
- Pile driving
- Seismic exploration
- Explosions

Intermittent and Continuous Sounds
- Low- and mid-frequency sonar
- Shipping
- Wave energy converters
- Tidal turbines
Underwater Noise Effects - Barotrauma

- Swim bladder
 - Contracts and expands
 - Rupture
 - Damages surrounding tissues

- Dissolved blood gasses come out of solution
 - Bubbles form in blood and tissues
 - Damages tissues, vessels, organs

- Equilibration state of animal is important
 - Neutrally buoyant fish
 - Tissue-gas equilibration with surrounding water
 - Physiological state of fish at exposure is critical (mimic state of wild fish)
Testing Methods

Salmon and Bass

Tidal Turbine Noise Exposure 24 hours

Barotrauma → Detailed External Exam → Necropsy → Detailed Internal Exam

Auditory Evoked Potential - AEP → Hearing Test → Changes in threshold sensitivity

Salmon only
Noise from OpenHydro tidal turbine

- Turbine spectrogram
 - Measured at EMEC
- Laboratory experiments
 - Continuous noise exposure
 - Physiological response of fish to sound exposure
Tidal Turbine Noise and Fish Audiograms
Tidal Turbine - Hearing Tests

- Respiration reservoir
- Hydrophone holder
- Respiration tube
- Electrode wires
- Fish holder
- AEP tank

Hearing test
Brain activity - synchronized to the sound wave

Synchronized Brain activity disappeared = no detection

Outcome for juvenile salmon:

NSS difference between test and control exposures @ 158-162dB
Barotrauma Exposure and Effects Response Model

Barotrauma
- Used panel of 72 injuries to assess biological effects
- Purpose “Quantify a qualitative assessment”
- Focused on physiological ‘meaning’ of observed injuries

Fish Index Trauma - FIT
- List of 72 injuries
- Physiological Rank
- 3 Injury classes
- Weight

Response Weighted Index (RWI)
\[RWI = \sum (W \times T_i) \]

<table>
<thead>
<tr>
<th>Mortal Injury</th>
<th>Wt</th>
<th>Moderate Injury</th>
<th>Wt</th>
<th>Mild Injury</th>
<th>Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead within 1 hr</td>
<td>5</td>
<td>Hemorrhage: intestine</td>
<td>3</td>
<td>Hematoma : vent</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhage: heart</td>
<td>5</td>
<td>Hemorrhage: wall capillaries</td>
<td>3</td>
<td>Hematoma: dorsal fin</td>
<td>1</td>
</tr>
</tbody>
</table>
Fish Physiology Groups

Physostomous
- Connection between gut and swim bladder
- Gulp or burp air
- Need access to air to increase swim bladder volume

Physoclistous
- Closed swim bladder
- Small organ for gas exchange to fill or empty swim bladder
- Need time – several hours to change swim bladder volume

SALMON
Micropterus salmoides Largemouth Bass (juvenile)
Photo by: Brian Zimmerman

BASS
Micropterus salmoides Largemouth Bass (juvenile)
Photo by: Brian Zimmerman
Results - Barotrauma

Salmon

Largemouth Bass

Proportion of injury occurrence (unweighted)

- CONTROL SALMON
- EXPOSED SALMON

Proportion of injury occurrence (unweighted)

- CONTROL BASS
- EXPOSED BASS

Micropterus salmoides Largemouth Bass (juvenile)
Photo by: Brian Zimmerman
Salmon and bass showed low levels of hemorrhages in their tissues, considered to be recoverable.

Both species have deflated their swimbladders, probably due to combination of:
- Stress
- Active management

Bass actively empty their swim bladder over time.

Salmon quickly empty swim bladder with a burp, then refill with gulps of air.
Effects of Tidal Turbine Sound on Fish

- “Worst case” levels of noise for one turbine (OH)
 - Tested juvenile salmon and largemouth bass (surrogate for rockfish)
 - Noise equivalent to placing fish next to turbine, no avoidance
 - Exposure for up to 24 hours (continuous, longer than tidal cycle)
- Barotrauma appears to be minor, recoverable as fish moves away
- Hearing shift for salmon not significant

BUT need more info on:

- Hearing shift in other fish groups
- Effects in barotrauma and hearing shift on elasmobranchs
- Sound from other turbine types
- Effects of arrays of turbines (additive, multiplicative) at commercial buildout
Thank you!

We would like to acknowledge the generous support of the US Department of Energy Wind & Water Power Technologies Office, our project partners, and the cooperation of MHK technology and project developers.

Michele B Halvorsen
michele.halvorsen@pnnl.gov
360-681-3697

Thomas J Carlson
thomas.carlson@pnnl.gov
503-417-7562

Andrea E. Copping
andrea.copping@pnnl.gov
206-528-3049