Part 1: Long-range active acoustic detection, localization, tracking and classification for offshore renewable energy applications and

Part 2: Radiated noise measurements in a high-current environment using a drifting noise measurement buoy

Dr. Peter J. Stein
Scientific Solutions, Inc.
PART 1: Active acoustics: Why and why not?

- **Why?**
 - If you really want/need to detect, localize, and track an underwater object active acoustics (i.e. active sonar) is the most robust method.

- **Why not?**
 - The effects of the active acoustic transmissions on marine life.
 - Systems often don’t work that well for a variety of reasons.
 - Systems that work well are generally very expensive and have limited coverage.
One-way propagation loss

Propagation loss for different frequencies
Spherical Spreading ($20 \log R + aR$)

Range (meters)

Design frequency for a maximum range usually falls at around 10 dB of absorption loss
Common systems for bi-acoustic research

Different categories roughly depending on frequency

Imaging
- Generally >400 kHz
- Classification possible

Fish-finding
- Generally 50-200 kHz
- Location and estimation of bio-mass possible

Longer range detection, localization, and tracking (30-100 kHz)
- Robust classification not there yet, bigger targets
Evaluating and mitigating risks of marine hydroturbines

TidGen™ unit being installed off Eastport, Maine by the Ocean Renewable Power Company (ORPC)
Plan: Integrated Near-field and Far-Field Systems

Year 1
1 TidGen™ Device
Near Field (50m)
Data to shore

Year 2
5 TidGen™ Devices
Mid Field (100m)

Year 2+
5 TidGen™ Devices
Far Field (500m)
Close to Real Time Data

Spatial and Temporal
Event Initiated
Near Mitigation Monitoring

SSI Active acoustic monitoring (AAM) system
Swimmer detection systems as a basis for AAM

- An effective AAM for offshore renewable energy applications has pretty much the same requirements as swimmer detection sonar
 - Automatic detection, tracking, localization, and classification of low target strength objects in a shallow water harbor environment
- Swimmer detection sonar systems are fairly well developed, however most are very expensive and classification is still an issue
- SSI has been working since 2002 to develop a cost effective swimmer detection sonar system based on networking simple inexpensive sonar “nodes”
- The SSI/ORPC AAM program is based on leveraging the on-going SDSN development
Swimmer Detection Sonar Network (SDSN)

Legend:
- HDS API Enabled Hardware
- Other Hardware
Recent Trial Results
Major uncertainties

- Will longer range detection, localization, and tracking systems work in the required environment?
 - High currents?
 - Variable sound speed field?
 - Potentially rocky bottom?
- That is, will it work off Eastport, Maine?
Test installation using existing nodes and ORPC beta
Eastport Testing of Current Node – September 2010
Eastport Drift/Tow Tests

- Two targets:
 - TS = -5 to +5 dB re 1 m (mid-size whale)
 - TS = -20 to -15 dB sphere (small odonocete/pinneped)
Large target run
Small target tracker results
New Node

45-75 kHz Assembly

90-120 kHz Assembly

HF Transducers on Electronics Enclosure

LF Transducers

Electronics
SSI is now teamed with ORPC to develop AAM for marine hydrokinetic energy applications.
Conclusions (AAM)

- There are many active acoustic systems available for mitigation and monitoring
- Generally high frequency imaging systems and thus limited coverage for the cost
- There is one operational system (I know of) for longer range DLTC of marine mammals (SURTASS LFA HF/M3 Sonar)
- AAM systems are under development which may eventually lead to robust longer-range DLTC of marine mammals and fish (classification will always be difficult)
- Integration of systems will lead to greatest advancements
- Issues related to marine mammal harassment need to be studied and evaluated
PART 2: Radiated Noise Measurements In High Currents

Need to determine radiated noise impacts of tidal turbines

However, high currents make accurate noise measurements very difficult
Moored system

Will be contaminated by turbulent flow noise

Hydrophone
Turbulent fluctuations stay away from hydrophone

- But calibration gets very tricky due to added frequency dependence
 - Low frequency turbulence still gets through
 - High frequency sound of interest can get absorbed by urethane
Further: Moored system subject to contamination

Local bottom noise sources dominate

➢ i.e. noise is depth dependent
Maybe suspend hydrophone in water column

- Buoyancy
- Hydrophone
- Urethane
Besides getting a little scary
There is also cable strum

- Violent shaking of the cable
- Noisy (shaking of hydrophone, couplings)
- Change in depth due to cable shortening and lengthening can lead to pressure fluctuations usually enough to saturate preamplifiers
Solution

- Suspend hydrophone from a drifting platform
- Drift with and without the tidal generator in the path
Feasibility test conducted last fall
Data: Hydrophone suspended from drifting platform

- Very promising, but data still contaminated
- Boat rocking caused noise and hydrophone heave
- Some cable strum due to some differential motion between boat and current (wind also drives the boat)
- A lot of sifting to get even small chunks of good data

22 meters from barge
Designed and built spar buoy to remove last issues

Figure 1: DNM buoy electronic suite.
- 24vdc Battery
- Analog Data Logger
- Isolation Transformers
- GPS Data Logger
- Amplifiers
- Wiring/PWR Interconnects
- Hydrophones in faired cable
- GPS antenna
- Tag line

*** Not To Scale ***
Tests with spar buoy conducted in July

TGU about 23 RPM and 3 knots versus lowest ambient
Conclusions

- High current noise measurements can be made from a drifting spar buoy.
- It is very labor intensive and not feasible for continuous long-term monitoring.
- OPRC turbine is very quite.
 - No incidental harassment authorization (IHA) required.
- Plan for tidal generator is to install accelerometers on the unit.
 - Radiate noise will be correlated with accelerations.
 - Accelerometers will then provide long-term monitoring of noise levels (also failure detection).