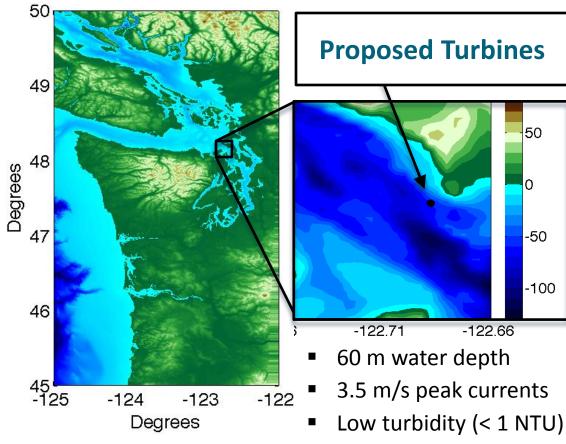
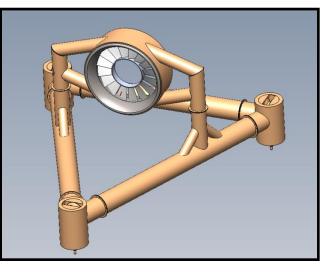
Integrated Post-Installation Monitoring


Brian Polagye Northwest National Marine Renewable Energy Center University of Washington <u>bpolagye@uw.edu</u>

Monitoring Technologies and Strategies for Marine and Hydrokinetic Devices Webinar September 14, 2011


NNMREC

Tidal Energy Project Development Snohomish PUD/OpenHydro

Cable to shore

OpenHydro Technology

- 2 x 6 m turbines
- 250 kW peak power
- Gravity foundation
- 3-5 year deployment

Post-Installation Monitoring

- At pilot-scale, provide information about high significance/high uncertainty interactions with devices
 - Key input to risk assessment frameworks
- Monitoring should not change animal behavior nor affect device operation
- Environmental monitoring should not dominate over other project costs
 - All projects are also demonstrating technical readiness and economic viability
 - Post-installation monitoring requires prioritization

Environmental Concerns

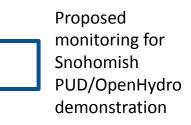
Device presence: Static effects Device presence: Dynamic effects Chemical effects Acoustic effects	Electromagnetic effects	Energy removal	Cumulative effect
---	----------------------------	----------------	-------------------

Physical environment: Near-field Physical environment: Far-field

Habitat

Invertebrates

Fish: Migratory


Fish: Resident

Marine mammals

Seabirds

Ecosystem interactions

	ΔΔ		Δ	Δ		
ΔΔ		Δ	Δ	Δ		
ΔΔ		ΔΔ	Δ	\		
ΔΔ	ΔΔ	ΔΔ				
ΔΔ		ΔΔ				
ΔΔ		ΔΔ				
		ΔΔ		Δ	Δ	
ΔΔ		ΔΔ	Δ	Δ	Δ	
	ΔΔ	ΔΔ	ΔΔ			

Commercial-Scale Effects

Polagye, B., B. Van Cleve, A. Copping, and K. Kirkendall (eds), (2011) Environmental effects of tidal energy development.

NNMREC

Dynamic Effects Monitoring

Objectives

- Quantify the risk of blade strike to marine life
- Improve understanding of how marine life responds to device presence
- Both of these should be at the lowest level of taxonomic classification possible

Challenges

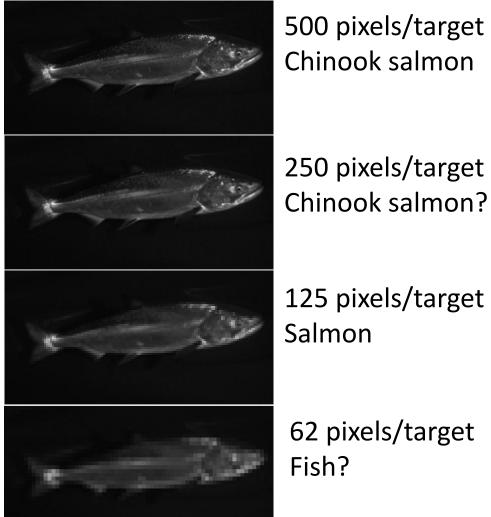
- Laboratory and field studies to date suggest blade strike will be an infrequent occurrence
- Difficult and resourceintensive to monitor in the field

NNMREC

Monitoring Technology

	Underwater Imaging	Active Acoustics	Trawl Surveys	Fish Tags
Prior MHK Experience	OpenHydro (EMEC)	Verdant Power (East River) ORPC (Cobscook Bay)	None	OpenHydro (FORCE) Hydro Green (Hastings)
Blade Strike Detection				
Taxonomic Classification	Contrast			
Functional Range	Turbidity and Aeration			Tag Frequency
Behavioral Disturbance	Illumination			
Overall				

OSU

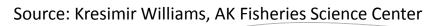

W

Underwater Imaging Considerations

- Stereo imaging absolute size, position, and speed
- Similarities to trawl ground-truthing and benthic habitat surveys
 - High relative motion between camera and target
 - Taxonomic classification required
- Several unique considerations for turbine monitoring
 - Positioning of lights and cameras relative to turbine
 - Long deployment time (biofouling, durability)
 - Recovery and redeployment instrumentation

Camera and Optics Selection

500 pixels/target Chinook salmon


62 pixels/target

Fish?

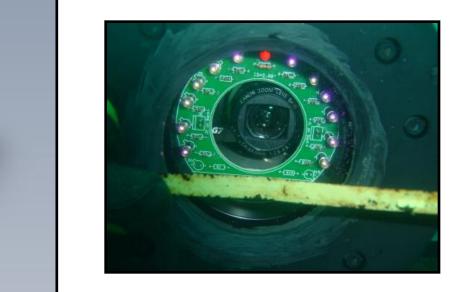
- 2 Mpx machine vision cameras
 - 10 Hz maximum frame rate
 - Resolution/bandwidth
- 45° FOV lens (in air)
- Flat optical port (biofouling)

Manta G-201 (to scale)

Illumination Selection

Imaging fast moving targets

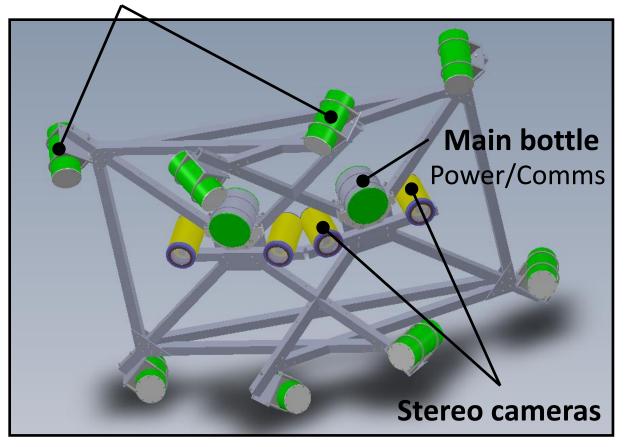
- Short exposure time: 2-50 μ s (Gallager, et al. 2004)
- Large camera-light separation (Jaffe 1988)
- Full-spectrum strobes (Excelitas MVS 5002)
 - Four strobes per stereo imaging system
- Behavioral disturbance is problematic
 - Considered red, IR, and NIR lighting options
 - Initially, pre-set duty cycle with disturbance analysis
 - As behavior/interactions are better understood, progress to event-based illumination


Biofouling Mitigation Strategies

Biofilm formation begins immediately after deployment

Mechanical Wiper

Copper Ring

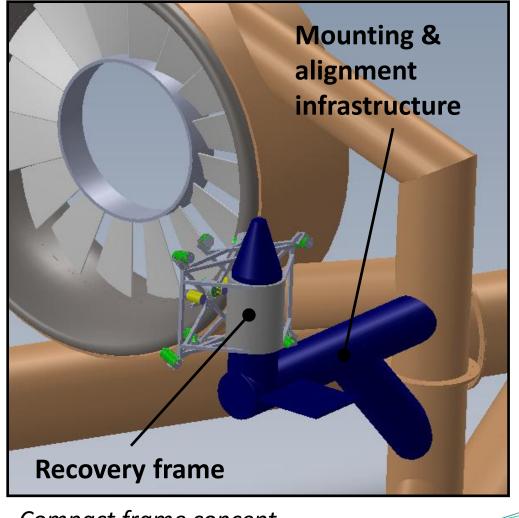

Ultraviolet Lighting

Even with mitigation, performance will degrade with time

System Layout Concept

Strobe housing

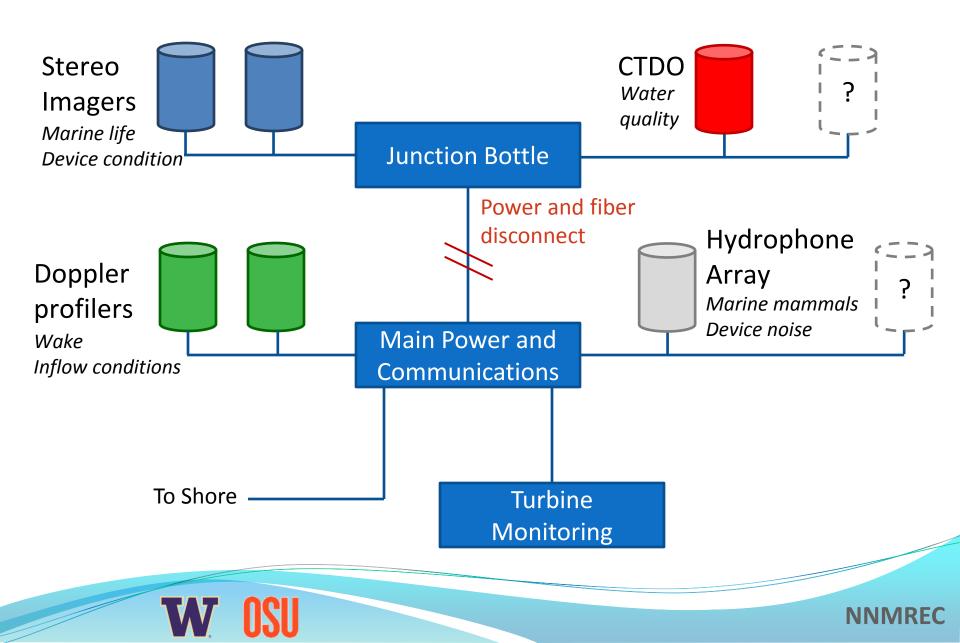
Compact frame concept


 2 stereo camera systems

- Strike detection
- Taxonomic classification
- 1 m camera-light separation
- Compact frame for maintenance

Recovery and Redeployment Concept

Reasons for recovery:


- Biofouling removal
- Maintenance and repair
- Additional instruments
- Reorientation of cameras
- Must be recovered independent of turbine
- Must be reconnected to turbine power and data systems

Compact frame concept

Monitoring System Integration

Discussion

- How much emphasis should be placed on monitoring for blade strike?
 - Laboratory tests suggest low consequence
 - How much species-to-species, site-to-site, and turbineto-turbine variability is there?
- Regulatory mandates are species-specific, but this limits the tools available
- Leverage environmental monitoring infrastructure whenever possible – camera can also monitor turbine health (biofouling, vibration)
- Post-installation monitoring is essential, but technically challenging – prioritization required

Acknowledgments

This project leverages the expertise of many individuals:

- <u>University of Washington</u>: Jim Thomson, Sandra Parker-Stetter, Joe Talbert, Alex de Klerk, Keith van Thiel, Tim McGinnis, Randy Sindelar, and Nick Stelzenmuller
- H.T. Harvey & Associates: Sharon Kramer and David Zajanc
- Sound & Sea Technology: Larry Armbruster
- Sea Mammal Research Unit, Ltd: Dom Tollit, Jason Wood
- Alaska Fisheries Science Center: Rick Towler and Kresimir Williams

This material is based upon work supported by the Department of Energy and Snohomish County PUD.

