### International perspectives on environmental risks of wave and tidal energy development

### Dr Gareth Davies, Orkney, Scotland



Contact: gareth.davies@aquatera.co.uk

### **Overview**

- Introduction to Orkney
- Environmental issues and sensitivities
- Current energy related risks
- Realities of deployments so far
- Future development pressures
- Managing risks and opportunities as capacity grows
- International collaboration and application of local lessons and experience



## An Orkney case study

- Orkney lies off the north of Scotland – the global centre for marine energy
- 6 wave & 6 tidal energy devices being deployed
- 2 & 2 more on the way
- Over 50 deployment & recovery operations
- 20 years of effort & 8 years operations experience







# Key issues – local community

- Population 20,000
- Stromness 2,000
- Kirkwall 7,000
- Eday 350
- Over 150 employed in marine renewables sector
- Need over £200,000 income per month
- Aquatera is one of 20 or so companies in the local supply chain
- Work in over 20 countries globally
- Work for over 30 governments, technology and utility companies





### Key sensitivities – mammals & large sealife

### Cetaceans

- Porpoise
- Killer whales (Orcas)
- Minke whale
- Dolphin

### Seals

- Common (harbour) seal
- Grey seal

### Others

- Basking sharks
- Leatherback turtles
- Coastal otters



# Key sensitivities - birds

#### Resident around tidal streams

- Shag
- Black Guillemot
- Fulmar
- Eider duck
- Seasonal (breeding)
- Auks
  - Common Guillemot, Razorbill
- Great Skua
- Gulls
  - Blacked backed, herring
- Gannet
- Seasonal (wintering)
- Seaduck
  - Longtailed
- Divers
  - Red throated, great northern, black throated

![](_page_5_Picture_18.jpeg)

### Key sensitivities – tidal site seabed

- Generally bedrock
- Any sediment thin & mobile
- Prolific faunal turf
- Formed by common and widespread species

![](_page_6_Picture_5.jpeg)

![](_page_6_Picture_6.jpeg)

![](_page_6_Picture_7.jpeg)

### Key sensitivities – wave site seabed

- Generally sedimentary
- Patches of bedrock and glacial moraine debris

![](_page_7_Picture_3.jpeg)

![](_page_7_Picture_4.jpeg)

![](_page_7_Picture_5.jpeg)

## Key sensitivities - sea users

- Merchant shipping
- Ferries
- Fishing
  - Coastal creeling
  - Bottom trawling
  - Mid-water trawling
- Offshore oil and gas
- Coastal aquaculture
- Recreation
  - Yachting and boating
  - Surfing
  - Scuba diving
  - Coastal recreation

![](_page_8_Picture_14.jpeg)

uatera.co.uk

# **Current energy risks & impacts**

# Our existing energy systems have lead to:

- Sea temperature rise
- Seawater acidification
- Polar ice melt
- Changing species distributions
- Increase in species extinctions
- Oil spills
- Oily water and chemicals discharges
- Radionuclide contamination
- Thermal pollution
- Water filtration
- Water abstraction
- Underwater noise
- Light pollution
- Flare mortality for birds
- Obstruction to shipping and fishing
- Seabed disturbance
- Seabed subsidence

# The starting point is not without existing issues!!

![](_page_9_Picture_20.jpeg)

### Wave energy experiences

- Shoreline system operating for 10 years
- Moorings installed for 6 years without incident
- 6 piles drilled near shore
- Devices 12 operational months without incident
- Birds fly by without apparent interest, seals and cetaceans seem unaffected
- No audible mechanical noise from devices

![](_page_10_Picture_7.jpeg)

# **Tidal energy experiences**

- Two piles in position for 5 years
- Turbine operations for 12 months plus duration
- Gravity base in place for 5 years
- No shipping accidents but rising concerns in frequent channel users
- No signs of behavioural change in birds or seals
- Fish seen at slack water but not when tide is running
- Jack-up rigs installed and removed without wildlife disturbance
- Basking sharks observed swimming without any change in behaviour past manoeuvring tugs
- No seals observed in tidal streams over 5 days of observation

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_11.jpeg)

![](_page_11_Picture_12.jpeg)

![](_page_11_Picture_13.jpeg)

![](_page_11_Picture_14.jpeg)

### **Orkney's future energy developments**

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

| Key |
|-----|
|-----|

Onshore wind New onshore wind Wave Tidal Offshore wind Wave leases Tidal leases Mirco & other Gas & other EMEC sites

#### 40 MW existing/planned [ ] 100-200 MW 500-1000 MW 500-2,500 MW 1000 MW 550 MW 550 MW 500 MW 2.5 MW Dispersed

Dispersed and >

20 MW

5 + 7 MW

### Identification & prioritisation of potential interactions

For an interaction to occur between a species/habitat and a technology/ mooring/support structure combination, the species/habitat must be vulnerable to an environmental pressure that the technology etc is likely to cause.

![](_page_13_Figure_2.jpeg)

### **Priority issues**

| Marine birds            | Marine mammals and<br>basking sharks | Offshore and coastal<br>habitats |  |  |
|-------------------------|--------------------------------------|----------------------------------|--|--|
| Displacement and visual | Underwater noise and                 | Loss of habitat                  |  |  |
| disturbance             | vibration                            | Changes in sediment              |  |  |
| Noise above the surface | Shock/pressure waves                 | dynamics                         |  |  |
| Underwater noise and    | Noise above the surface              | Loss of coastal habitat &        |  |  |
| vibration               | Collision                            | change in coastal                |  |  |
| Collision               | Barrier to movement                  | character                        |  |  |
| Loss of habitat         | Entanglement                         | Change in coastal                |  |  |
| Changes in turbulence   | Entrapment                           | processes                        |  |  |
|                         | Loss of habitat                      |                                  |  |  |
|                         | Displacement                         |                                  |  |  |

These were the key issues to arise from the assessment – They will individually be applicable to certain technologies and certain species and habitats in specific locations

![](_page_14_Picture_3.jpeg)

### **Overview of output from the assessment**

The tool identified about 29,400 potential interactions

Of these potential interactions:

- ~ 1800 were scored as significant
- ~ 5500 were scored as unknown
- ~18500 were scored as non-significant
- ~ 3600 were scored as not-applicable
- For a particular development
  - e.g. Horizontal axis turbine with a monopile
    - only 345 of these interactions are potentially significant or unknown
    - These relate to 12 priority issues

![](_page_15_Picture_11.jpeg)

### **Approach to weighting**

- The distribution of the various factors identified in the weighting analysis was entered into a GIS
- The various scores are applied to the areas, line and points representing the various features
- Maps are prepared showing the distribution of suitability for the different major project activities
- Detailed maps follow:

![](_page_16_Figure_5.jpeg)

![](_page_16_Picture_6.jpeg)

### Key sea user interactions

- Key relationships for wave and tidal technologies are with
  - The local activities
  - Other industries
    - Shipping
    - Fishing
    - Tourism
  - Conservation & amenity
    - Wildlife and habitats
    - Cultural heritage
    - Recreation and amenity

|                 | Offshore | Near shore | Coastal | Cable |
|-----------------|----------|------------|---------|-------|
| Shipping        |          |            |         |       |
| Fishing         |          |            |         |       |
| Boating         |          |            |         |       |
| Surfing         |          |            |         |       |
| Aquaculture     |          |            |         |       |
| Leisure-tourism |          |            |         |       |
| Eco-tourism     |          |            |         |       |
| Archaeology     |          |            |         |       |
| Conservation    |          |            |         |       |

![](_page_17_Picture_12.jpeg)

### **Example – VMS fishing data**

- VMS data provides unparalleled insight into the distribution of fishing activity
- No need to link in catches, vessels etc
- Key interest is effort
- Need to be able to separate steaming and fishing

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_6.jpeg)

### Where for energy generation?

- Wide range of possible site options
- Sites need to be based upon multiple criteria
  - Energy resources
  - Technical limits
  - Cost factors
  - Planning factors
  - Infrastructure
- Sites need to take into account scale of development, timing & relationship to others

#### Suitability for wave developments

![](_page_19_Figure_10.jpeg)

![](_page_19_Picture_11.jpeg)

# International collaboration and exchange in lessons learned

- Marine renewables is a global business
- Sites are not universal but they are widespread
- Species may be different but the niches they fill are similar
- Devices may be different but their principles are similar
- Early devices have not shown any "hidden" impacts
- Key issues are around use of DP vessels and seals, navigation and community benefits
- Learning so far can avoid un-necessary costs, delay and precaution
- Need to build mechanisms for sharing data and experiences
- Renewables are better for the environment than existing energy systems – should we start treating them in that way?

![](_page_20_Picture_10.jpeg)