Records of Trace Metals in Sediments from the Oregon Shelf and Slope: Investigating the Occurrence of Hypoxia Over the Past Several Thousand Years

Journal Article

Title: Records of Trace Metals in Sediments from the Oregon Shelf and Slope: Investigating the Occurrence of Hypoxia Over the Past Several Thousand Years
Publication Date:
September 29, 2014
Journal: Chemical Geology
Volume: 382
Pages: 32-43
Publisher: Elsevier

Document Access

Website: External Link

Citation

Erhardt, A.; Reimers, C.; Kadko, D.; Paytan, A. (2014). Records of Trace Metals in Sediments from the Oregon Shelf and Slope: Investigating the Occurrence of Hypoxia Over the Past Several Thousand Years. Chemical Geology, 382, 32-43.
Abstract: 

Hypoxic (< 62 μmol/kg or 1.43 mL/L O2) to anoxic conditions have been repeatedly observed over the last 10 years on the Oregon shelf, while similar conditions are absent in historical records from 1950 to 1999. This study seeks to identify whether similar instances of decadal length hypoxia/anoxia have occurred in the Oregon coastal zone prior to recorded history and to shed light on potential causes for these events. We have measured redox-sensitive metals, uranium, vanadium, and molybdenum concentration profiles in 7 cores across the coastal affected region and in 3 cores from deeper water sites. Results indicate regional variability in redox conditions through time. The northern sites show no metal enrichment throughout the cores, while the southern sites show strong metal enrichment at the base of the cores, indicative of previous hypoxic/anoxic conditions. The southern sites indicate progression in time toward less hypoxic/anoxic burial, in conflict with recent hydrographic trends. Analysis of offshore sediments representing sites beneath the California Undercurrent shows an opposite trend to that observed in the coastal sites. Excess Mo concentrations generally increase toward the present in cores collected within the upwelling source waters at ~ 300 m water depth, suggesting a trend toward oxygen depletion. The Mo enrichment corresponds to increases in δ13C, total organic carbon (TOC), and declines in carbon:nitrogen (C:N) ratios which may indicate that a localized rise in marine productivity has contributed to oxygen drawdown. However, these metal and associated geochemical enrichments are not clearly seen in other cores collected in deeper water in the same region, suggesting that widespread changes in productivity or hypoxia may not have occurred. When the Mo enrichment records for two dated mid-depth sites are compared to climatic indicators such as the Pacific Decadal Oscillation no clear relationships are found on decadal time scales. These results are consistent with the hypothesis that modern hypoxic conditions observed on the continental shelf throughout the region are driven by modern climate changes, not observed in this region for the past hundreds to thousands of years.

Find Tethys on InstagramFind Tethys on FacebookFind Tethys on Twitter
 
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.