

SEA Wave: Strategic Environmental Assessment of Wave energy technologies

Deliverable Report D2.2

Critical analysis of environmental mitigation and monitoring strategies

This project has been co-funded by the European Maritime and Fisheries Fund EMFF) of the European Union. The contents of this document reflect only the (author's view. EASME is not responsible for any use that may be made of the information it contains.

Revision

Revision	Date	Description	Originated by	Reviewed by	Approved by
1.0	08/04/2019	First draft	Jennifer Fox (AQT)	lan Hutchison (AQT)	
2.0	23/04/2019	Feedback from partners incorporated. Final draft	Jennifer Fox (AQT)	Caitlin Long (EMEC)	

Project Information

Project title	Strategic Environmental Assessment of Wave energy technologies							
Project acronym	SEA Wave							
Grant agreement number	EASME/EMFF/2017/1.2.1.1/01/SI2.787660							
Project start date	01/11/2018							
Project duration	36 months							
Project lead	The European Marine Energy Centre (EMEC) Ltd							
Project website	www.seawave-emff.eu							

Please contact the following people for further information on this deliverable:

- SEA Wave WP2 Leader & ORJIP OE Secretariat- Jennifer Fox, Aquatera Ltd Jennifer.fox@aquatera.co.uk
- SEA Wave Project Manager- Caitlin Long, EMEC Caitlin.long@emec.org

Contents

1	Introduction	4
2	Methodology	5
3	Critical analysis of management measures	7
	Barrier to Movement (relevant to wave and tidal) Error! Bookmark not	defined.
	Changes in sediment dynamics (relevant to wave and tidal)	8
	Changes in tidal flow, flux and turbulence structures (relevant to tidal only)	9
	Dissipation of wave energy (relevant to wave only)	11
	Collision risk (relevant to tidal only)	11
	Vessel disturbance or collision (relevant to wave & tidal)	13
	Displacement (relevant to wave & tidal)	14
	Electromagnetic fields (EMF; relevant to wave & tidal)	14
	Entanglement (relevant to wave & tidal)	16
	Entrapment (relevant to wave & tidal)	17
	Habitat creation (relevant to wave & tidal)	17
	Introduction of marine non-native species (MNNS; relevant to wave & tidal)	18
	Lighting (relevant to wave & tidal)	18
	Loss of seabed habitat (relevant to wave & tidal)	20
	Pollution impacts (relevant to wave & tidal)	20
	Underwater noise (relevant to wave & tidal)	21
4	Conclusions	22

List of Tables

Table 1: Critical analysis of management measures related to the interaction of 'barrier to movement' 7
Table 2: Critical analysis of management measures related to the interaction of 'changes in sediment dynamics' 9
Table 3: Critical analysis of management measures related to the interaction of 'changes intidal flow, flux and turbulence structures
Table 4: Critical analysis of management measures related to the interaction of 'dissipation of wave energy'
Table 5: Critical analysis of management measures related to the interaction of 'collision risk' 13
Table 6: Critical analysis of management measures related to the interaction of 'vesseldisturbance or collision'
Table 7: Critical analysis of management measures related to the interaction of 'displacement' 14
Table 8: Critical analysis of management measures related to the interaction of 'displacement' 16
Table 9: Critical analysis of management measures related to the interaction of 'entanglement'
Table 10: Critical analysis of management measures related to the interaction of 'entrapment' 17
Table 11: Critical analysis of management measures related to the interaction of 'habitat creation' 18
Table 12: Critical analysis of management measures related to the interaction of'introduction of marine non-native species'
Table 13: Critical analysis of management measures related to the interaction of 'lighting'. 19
Table 14: Critical analysis of management measures related to the interaction of 'loss of seabed habitat 20
Table 15: Critical analysis of management measures related to the interaction of 'pollution impacts'
Table 16: Critical analysis of management measures related to the interaction of 'underwater noise 21

1 Introduction

This deliverable provides a critical analysis of management measures that can be used to mitigate or manage the potential environmental effects of wave and tidal energy developments.

The aim of this deliverable is to critically analyse the environmental mitigation and monitoring measures that have been used to date in completed or planned wave and tidal energy projects. This will provide the industry with knowledge of successes and lessons learnt in relation to these measures. This analysis will be used to inform the development of environmental monitoring strategies used in Work Package 3.

The objectives of this deliverable are to:

- Conduct a critical analysis of environmental mitigation and monitoring strategies for wave and tidal energy developments
- Validate this analysis with a range of stakeholders from the wave and tidal industry

This deliverable is the second piece of work within Work Package 2 and builds on the overall impact of this Work Package which will be:

- A consensus on the priority knowledge gaps and consenting issues upon which coordinated strategic data collection and research efforts should focus, ensuring improved efficiencies in the allocation of resources and distribution of effort.
- An established European Network of stakeholders and end users engaged in better understanding the potential impacts of wave developments and improving the consenting process.
- Refinement of the consenting processes for ocean energy deployments, helping to reduce costs and the time spent in achieving consent.
- Environmental monitoring strategies designed to address the key consenting risks of wave energy projects that will be implemented during the project.

This deliverable builds on previous work by OES Annex IV on the development and appraisal of environmental management measures relevant to wave and tidal energy developments. As part of this work, extensive stakeholder consultation was undertaken in order to gather a comprehensive list of management measures designed to manage the environmental effects of wave and tidal projects during construction, operation and decommissioning/removal. This list was developed into a tool designed to support the development of project specific environmental management plans, which is available on the Tethys website¹.

These management measures are intended as safeguards for marine animals and habitats until scientific uncertainty around the risk of effects of wave and tidal energy devices is reduced and such measures can be reduced or removed as appropriate.

This deliverable builds on this work, considering the advantages and disadvantages of each of the environmental management measures included in the tool to date.

¹ <u>https://tethys.pnnl.gov/management-measures</u>

2 Methodology

Environmental management measures are considered in relation to the relevant potential environmental impact. This list of potential impacts and associated management measures was informed by work carried out by the Offshore Renewables Joint Industry Programme (ORJIP) for Ocean Energy² and OES Annex IV. The relevant impacts are:

- Barrier to movement
- Change in sediment dynamics
- Changes in tidal flow, flux and turbulence
- Collision Risk
- Displacement
- Dissipation of wave energy
- Electromagnetic fields
- Entanglement
- Entrapment
- Habitat creation
- Introduction of marine non-native species
- Lighting
- Loss of seabed habitat
- Pollution
- Underwater noise
- Vessel disturbance

Key experts in the management of the impacts and potential effects of wave and tidal energy developments on the marine environment were engaged in interview style meetings to review the lists presented alongside the advantages and disadvantages of each environmental management measure.

Key stakeholders were targeted during this process, including SEA Wave project partners (test site operator, wave technology developers, consultants and academics), environmental managers within wave and tidal technology companies, statutory nature conservation bodies, regulators and consultants. The following questions formed the basis of the interviews:

- Please comment on the list of Management Measures are there any additional measures that should be included or are there any measures that you would suggest should be changed or removed?
- Please comment specifically on the pros and cons do you have any additional information that would be useful to include here?

² <u>http://www.orjip.org.uk/oceanenergy/about</u>

• Please add your specific experience in the use of these management measures. Did the measure work well, or not? Were there challenges in the implementation of this measure? Did you carry out monitoring to measure how well the management measure was working? Did you have to report on the implementation of the measure to regulators or stakeholders?

The results of this critical analysis is presented in Section 3.

It should be noted that some of these impacts presented are considered unlikely to occur, or should they occur, the effect to be minor. This is not an analysis of the significance of interactions or the likelihood of interactions. All possible interactions have been included here as there is a chance that they could occur and a chance that there could be a deleterious effect. This analysis is limited to a critique of the management measure that will potentially be utilised to mitigate, manage or monitor a potential interaction between marine energy devices and marine animals and habitats.

3 Critical analysis of management measures

As can be seen in the tables below, the green columns show details of the interaction and associated management measure; Interaction, Receptor, Phase of project, Environmental management measures, and Management measure category. Management measures categories are split into mitigation measure, design feature or monitoring. The blue columns on the right of each table show the advantages and disadvantages associated with each measure.

Barrier to Movement (relevant to wave and tidal)

Interaction	Receptor	Phase of project	Environmental management measures	Management measure category	Effect of management measure - advantages	E
Potential barrier to movement due to the physical presence of devices and associated moorings / support structures, cables and electrical equipment.	All receptors	Construction	Site selection to avoid sensitive routes/areas	Design feature	Minimises risk of development acting as a barrier to movement by avoiding migratory routes or other important sites	Noi
Potential barrier to movement due to the physical presence of devices and associated moorings / support structures, cables and electrical equipment.	All receptors	Construction	Array/ mooring configuration designed to avoid migratory routes or other important sites	Design feature	Minimises risk of development acting as a barrier to movement by avoiding migratory routes or other important sites	Ma dev Car arra
Potential barrier to movement due to the physical presence of devices and associated moorings / support structures, cables and electrical equipment.	All receptors	All phases	Adherence to vessel management plan	Mitigation	Minimises the potential interaction between animals and construction or maintenance vessels	Noi
Potential barrier to movement due to the physical presence of devices and associated moorings / support structures, cables and electrical equipment.	All receptors	All phases	Monitoring of existing developments	Monitoring	Reduces scientific uncertainty	Ca

Table 1: Critical analysis of management measures related to the interaction of 'barrier to movement'

Effect of management measure - challenges

ne identified

ay be inconsistent with optimal layout of the velopment for exploitation of the energy source

n be a costly measure when scaling up to larger ays

ne identified

n be complex and costly

Page | 7

Changes in sediment dynamics (relevant to wave and tidal)

Interaction	Receptor	Phase of project	Environmental management measures	Management measure category	Effect of management measure - advantages	E
The potential wider or secondary effects (siltation changes or smothering) on protected or sensitive sub-littoral seabed due to devices and associated moorings, support structures and export cables	Benthic species	Operation & maintenance	Periodic visual monitoring through the use of divers or drop-down video, static cameras / remote sensing techniques, benthic grab surveys, geophysical survey to identify scour pits, turbidity measurements.	Monitoring	Generation of data to quantify level and spatial extent of effect.	Te wit of Pc Su
The potential wider or secondary effects (siltation changes or smothering) on protected or sensitive sub-littoral seabed due to devices and associated moorings, support structures and export cables	Benthic species	Operation & maintenance	Micro-siting of export cables and infrastructure to minimise the impact on sensitive habitats and species. Best practice techniques for cable installation, burial and protection.	Design feature	None identified	Nc
Reduced visibility impacting prey detection and obstruction avoidance.	Fish	All phases	Best practice methodologies to reduce resuspension of sediment during cable burial, device foundation installation, mooring installation or vessel anchor installation.	Mitigation	None identified	Nc
Disturbance resulting in smothering of fish spawning grounds	Fish	All phases	Best practice methodologies to reduce resuspension of sediment during cable burial, device foundation installation, mooring installation or vessel anchor installation.	Mitigation	None identified	Nc
The potential wider or secondary effects (siltation changes or smothering) on protected or sensitive sub-littoral seabed due to devices and associated moorings, support structures and export cables	Benthic species	All phases	Minimise the amount of structure on the seabed.	Design feature	Minimises the changes in sediment dynamics due to presence of structure on the seabed	Ca ch of
Reduced visibility impacting prey detection and obstruction avoidance.	Fish	All phases	Minimise the amount of structure on the seabed.	Design feature	Minimises the changes in sediment dynamics due to presence of structure on the seabed	Ca ch of
Disturbance resulting in smothering of fish spawning grounds	Fish	All phases	Minimise the amount of structure on the seabed.	Design feature	Minimises the changes in sediment dynamics due to presence of structure on the seabed	Ca ch of
The potential wider or secondary effects (siltation changes or smothering) on protected or sensitive sub-littoral seabed due to devices and associated moorings, support structures and export cables	Benthic species	Operation & maintenance	Modelling to predict the interaction between changes in sediment dynamics and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lir mi pre
The potential wider or secondary effects (siltation changes or smothering) on protected or sensitive sub-littoral seabed due to devices and associated	Benthic species	Operation & maintenance	Modelling to predict the interaction between changes in sediment dynamics and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lir mi pre

Effect of management measure - challenges

echnical and Health and Safety risks associated th periodic monitoring operation in close vicinity infrastructure.

ower shut down potential. ubsea static monitoring options require O&M.

one identified

one identified

one identified

an present financial/ logistical/ design allenges to technology developer to alter design device/ moorings

an present financial/ logistical/ design allenges to technology developer to alter design device/ moorings

an present financial/ logistical/ design allenges to technology developer to alter design device/ moorings

mited management measures available to inimise interaction despite modelling to fully edict interaction

mited management measures available to inimise interaction despite modelling to fully edict interaction

Interaction	Receptor	Phase of project	Environmental management measures	Management measure category	Effect of management measure - advantages	E
moorings, support structures and export cables						
Reduced visibility impacting prey detection and obstruction avoidance.	Fish	All phases	Modelling to predict the interaction between changes in sediment dynamics and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lir mi pro
Disturbance resulting in smothering of fish spawning grounds	Fish	All phases	Modelling to predict the interaction between changes in sediment dynamics and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lir mi pro

Table 2: Critical analysis of management measures related to the interaction of 'changes in sediment dynamics'

Changes in tidal flow, flux and turbulence structures (relevant to tidal only)

Interaction	Receptor	Phase of project	Environmental management measures	Management measure category	Effect of management measure - advantages	E
The potential wider or secondary effects on protected or sensitive sub-littoral seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	Benthic invertebrates	Operation & maintenance	Pre and post installation monitoring of sensitive benthic communities, based on diver, drop down, static visual surveys (camera) or grab sampling.	Monitoring	Reduce scientific uncertainty	Int no im Ma Co ph
Modifications to prey distribution and abundance (to include for other receptors) resulting in changes to foraging behaviour	Marine mammals, diving birds, and fish	Operation & maintenance	Observational surveys (including remote sensing) of bird and marine mammals (prey availability linked to benthic community)	Monitoring	Reduce scientific uncertainty	Sta dif an sy
The potential wider or secondary effects on protected or sensitive sub-littoral seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	All receptors	Operation & maintenance	Installation of ADCPs and turbulence sensors to better understand the baseline tidal flow conditions and hence the change in tidal flow due to presence of the device(s)	Monitoring	Reduce scientific uncertainty	No
The potential wider or secondary effects on protected or sensitive sub-littoral seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	All receptors	Operation & maintenance	Design structures to minimise effect on turbulence structure	Design feature	Minimises change in turbulence structure and hence potential interaction	Ca ch of
Modifications to prey distribution and abundance (to include for other receptors) resulting in changes to foraging behaviour	Marine mammals, diving birds, and fish	Operation & maintenance	Design structures to minimise effect on turbulence structure	Design feature	Minimises change in turbulence structure and hence potential interaction	Ca ch of
The potential wider or secondary effects on protected or sensitive sub-littoral seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	All receptors	Operation & maintenance	Modelling to predict the interaction between changes in tidal flow, flux and turbulence structure and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lir mi pre

Effect of management measure - challenges

mited management measures available to inimise interaction despite modelling to fully edict interaction

mited management measures available to inimise interaction despite modelling to fully edict interaction

Effect of management measure - challenges

nterpretation of data for statistical purposes may ot have power to detect change generated by npact.

ay require correlation with detailed omputational Fluid Dynamics studies and hysical flow measurements.

tatistical power of studies can be low. Can be fficult to distinguish between natural variation nd direct effects of energy removal from the stem

one identified

an present financial/ logistical/ design nallenges to technology developer to alter design ^t device/ moorings

an present financial/ logistical/ design nallenges to technology developer to alter design ^t device/ moorings

mited management measures available to inimise interaction despite modelling to fully redict interaction

Interaction	Receptor	Phase of project	Environmental management measures	Management measure category	Effect of management measure - advantages	E
Modifications to prey distribution and abundance (to include for other receptors) resulting in changes to foraging behaviour	Marine mammals, diving birds, and fish	Operation & maintenance	Modelling to predict the interaction between changes in tidal flow, flux and turbulence structure and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lir mi pre
The potential wider or secondary effects on protected or sensitive sub-littoral seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	All receptors	Operation & maintenance	Site selection	Design feature	Minimises significance of interaction	No
Modifications to prey distribution and abundance (to include for other receptors) resulting in changes to foraging behaviour	Marine mammals, diving birds, and fish	Operation & maintenance	Site selection	Design feature	Minimises significance of interaction	No

Table 3: Critical analysis of management measures related to the interaction of 'changes in tidal flow, flux and turbulence structures

Effect of management measure - challenges

imited management measures available to ninimise interaction despite modelling to fully redict interaction

one identified

one identified

Dissipation of wave energy (relevant to wave only)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
The potential wider or secondary effects on protected or sensitive seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	Benthic invertebrates	Operation & maintenance	Benthic and intertidal surveys focused on indicator species, species assemblage, community structure and ecosystem function.	Monitoring	Reduce scientific uncertainty	De ma
The potential wider or secondary effects on protected or sensitive seabed due to removal or alteration of energy flow arising from devices and moorings or support structures.	Benthic invertebrates	Operation & maintenance	Modelling to predict the interaction between wave energy and animals	Monitoring	Reduces scientific uncertainty so appropriate management measures can be employed	Lin mir pre

Table 4: Critical analysis of management measures related to the interaction of 'dissipation of wave energy'

Collision risk (relevant to tidal only)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
Potential for collision with turbine blades	Marine mammals	Operation & maintenance	Install a 'detect and shut-down' system using active sonar and other appropriate monitoring equipment	Mitigation	This could reduce/remove risk of collision with moving blades	Th imj un spo No rec De de As
Potential for collision with turbine blades	Marine mammals	Operation & maintenance	Install a 'detect and slow-down' system using active sonar and other appropriate monitoring equipment	Mitigation	This could reduce/remove risk of collision with moving blades	Th imj un spo No rec De dei As

ffect of Management Measure - Challenges

etermining impacts against natural variability ay be difficult.

nited management measures available to nimise interaction despite modelling to fully edict interaction

Effect of Management Measure - Challenges

his could affect power production, is expensive to plement and does not help reduce scientific acertainty regarding the risk

certainty around effects of sonar on sensitive ecies

ot certain how often 'shut-downs' would be quired.

etection systems are currently insufficient to tect animals (in particular at array scale)

this will affect power production, it could dermine the investability of a project. his could affect power production, is expensive to plement and does not help reduce scientific heretainty regarding the risk

certainty around effects of sonar on sensitive ecies

ot certain how often 'slow-downs' would be quired.

etection systems are currently insufficient to tect animals (in particular at array scale)

this will affect power production, it could dermine the investability of a project.

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	
Potential for collision with turbine blades	Marine mammals	Operation & maintenance	Install a 'detect and deter' system using a combination of active sonar and acoustic deterrent device (ADD)	Mitigation	This could reduce likelihood of collision with moving blades although the efficacy of ADDs in these environments is unknown	Th de Ef De de
Interaction: Potential for collision with turbine blades	Marine mammals	Operation & maintenance	Install acoustic deterrent devices (ADDs)	Monitoring	This could reduce likelihood of collision with moving blades although the efficacy of ADDs in these environments is unknown	Th de Ef
Interaction: Potential for collision with turbine blades	Marine mammals, fish and seabirds	Operation & maintenance	Environmental monitoring to detect collision events	Monitoring	Understand avoidance behaviour, nature of interactions and outcome of collision events.	Ca Ur ful Pr ad Da Pc po av teo Int so int ca
Interaction: Potential for collision with turbine blades	Marine mammals, fish and seabirds	Operation & maintenance	Implement a 'soft start' approach during cut-in	Mitigation	This could reduce risk by allowing animals time to move away from the turbine. Low cost option, adopted for other activities (e.g. piling)	Ur de
Interaction: Potential for collision with turbine blades	Marine mammals, fish and seabirds	Operation & maintenance	Environmental monitoring to better understand near-field behaviour and avoidance	Mitigation	This will help reduce scientific uncertainty	Ca Ur ful Pr ad

³ Data mortgage is the concept of generating data more quickly than it can be analysed

Effect of Management Measure - Challenges

nis is expensive to implement and it is unknown if eterrent systems will help reduce risk

fects of ADDs on sensitive species

etection systems are currently insufficient to etect animals (in particular at array scale)

his is expensive to implement and it is unknown if eterrent systems will help reduce risk

fects of ADDs on sensitive species

an be a high cost associated with this

nclear how much monitoring will be required to lly understand this risk

acticalities of monitoring; technology is not lvanced enough yet to do this efficiently.

ata mortgage³

ower supply availability - hard-wired vs. battery; ower is required for monitoring and power vailability can present logistical, financial and chnical challenges

teraction between equipment - e.g. multibeam onar/ ADCP/ echosounder; there can be teraction between monitoring equipment which an present challenges in monitoring

ertain equipment used such as PAM may actually fect behaviour themselves.

nclear if this offers additional mitigation as many evices power up gradually anyway.

an be a high cost associated with this

nclear how much monitoring will be required to lly understand this risk

acticalities of monitoring; technology is not lvanced enough yet to do this efficiently.

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	
						Da
						Po po av teo
						Int so int ca
						Ce
						Pc
Interaction: Potential for collision with turbine blades	Marine mammals, fish and seabirds	Operation & maintenance	Reduce maximum blade tip speed	Mitigation	This could reduce the likelihood/consequence of potential collision events	Co
						Th
						со
Interaction: Potential for collision with turbine blades	Marine mammals, fish and seabirds	Operation & maintenance	Selective structural and blade coatings i.e. colours to aide detection	Mitigation	Unknown - it is possible that this will aid detection of subsea structures and help reduce risk	Ur Ot fis
						Us
						wit
Interaction: Potential for collision with turbine blades	Marine mammals, fish and seabirds	Operation & maintenance	Design proportion of swept area to structure area to minimise collision risk		This could reduce the likelihood/consequence of potential collision events	Ca

Table 5: Critical analysis of management measures related to the interaction of 'collision risk'

Vessel disturbance or collision (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Ef
Potential for disturbance from project vessels	Birds on water	All phases	Do not break up or 'flush' rafts of birds	Mitigation	Reduces potential effects. Relatively low-cost measure.	Effe
Potential for disturbance from project vessels	Birds on water & marine mammals	All phases	Adhere to minimum approach distances for vessels on approach to marine mammals and birds	Mitigation	Reduces potential effects. Relatively low-cost measure.	Non

⁴ Data mortgage is the concept of generating data more quickly than it can be analysed

Effect of Management Measure - Challenges

ata mortgage⁴

ower supply availability - hard-wired vs. battery; ower is required for monitoring and power railability can present logistical, financial and chnical challenges

teraction between equipment - e.g. multibeam onar/ ADCP/ echosounder; there can be teraction between monitoring equipment which in present challenges in monitoring

ertain equipment used such as PAM may actually fect behaviour themselves. otential impacts on power production.

ontrol mechanism of turbine blade speed unclear.

ay cause increased fatigue his could result in 'attraction', increasing risk of Illision

ncertainty around how animals use visual cues. ther sensory organs are often more important for h & seals

se of such measures may be limited to conform th IALA standards

an be a high cost associated with this

an present financial/ logistical/ design challenges technology developer to alter design of device

ffect of Management Measure - Challenges

ectiveness of mitigation unclear.

ne identified

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Effect of Management Measure - Challenges
Potential for disturbance from project vessels	Shore-nesting birds	All phases	Avoidance of sensitive shore nesting areas during sensitive periods with appropriate clearance distance.	Mitigation	Reduces potential effects. Relatively low-cost measure.	None identified
Potential for disturbance from project vessels	Marine mammals	All phases	Reduce speed and maintain steady course when animal is sighted	Mitigation	Reduces potential effects. Relatively low-cost measure.	None identified
Disturbance at seal haul-out sites from project vessels	Seals	All phases	Avoid transiting within 500m of designated seal haul outs	Mitigation	Reduces potential effects. Relatively low-cost measure.	None identified
Potential for disturbance from project vessels	Birds on water	All phases	Vessel transit route: defining routes to avoid sensitive sites and to only disturb one route	Mitigation	Reduces potential effects. Relatively low-cost measure. This is measurable and definable.	None identified
Potential for disturbance from project vessels	Marine mammals	All phases	Care will be taken to avoid splitting up groups and mothers and young	Mitigation	Reduces potential effects. Relatively low-cost measure.	None identified
Potential for disturbance from project vessels	Marine mammals & birds on water	All phases	Vessel speed limitation to and from site	Mitigation	Reduces potential effects. Relatively low-cost measure.	None identified

Table 6: Critical analysis of management measures related to the interaction of 'vessel disturbance or collision'

Displacement (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
Potential displacement of essential activities due to the presence of devices and associated moorings / support structures	All receptors	Operations & Maintenance	Site selection (taking into account cumulative impact of other developments)	Design feature	Minimises risk of development causing displacement by avoiding migratory routes or other important sites	No
Potential displacement of essential activities due to the presence of devices and associated moorings / support structures	All receptors	All phases	Timing of installation and decommissioning & marine operations to avoid times of particular sensitivity (e.g. breeding)	Mitigation	Minimises risk of development causing displacement by avoiding works during sensitive times	Са
Potential displacement of essential activities due to the presence of devices and associated moorings / support structures	All receptors	All phases	Array/ mooring configuration designed to avoid migratory routes or other important sites	Design feature	Minimises risk of development creating displacement by avoiding migratory routes or other important sites	Ma de Ca lar
Potential displacement of essential activities due to the presence of devices and associated moorings / support structures	All receptors	All phases	Baseline surveys should focus on functional importance of project areas and association of wildlife with hydrodynamic features and microhabitats,.	Design feature	Project design might be better informed to reduce or avoid such effects	No

Table 7: Critical analysis of management measures related to the interaction of 'displacement'

Effect of Management Measure - Challenges

one identified

an be disruptive and hence costly to developer

ay be inconsistent with optimal layout of the evelopment for exploitation of the energy source

an be a costly measure when scaling up to rger arrays

one identified

Electromagnetic fields (EMF; relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Eff
Impacts of electromagnetic fields from subsea cables on sensitive species	Migratory fish & elasmobranchs	Operation & maintenance	Install cable protection/ armour/ rock placement/ other cable protection	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects Reduces 'snagging risk' for vessels Creation of artificial habitat	The imp sen Cre agg Incr Rec futu
Impacts of electromagnetic fields from subsea cables on sensitive species	Benthic invertebrates	Operation & maintenance	Install cable protection/ armour/ rock placement/ other cable protection	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects Reduces 'snagging risk' for vessels Creation of artificial habitat leading to greater fecundity in species	The imp sen Cre agg Und spe and Incl Red futu
Impacts of electromagnetic fields from subsea cables on sensitive species	Migratory fish & elasmobranchs	Operation & maintenance	Use of 3-phase cables instead of DC cables	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects	Pot issu
Impacts of electromagnetic fields from subsea cables on sensitive species	Benthic invertebrates	Operation & maintenance	Use of 3-phase cables instead of DC cables	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects	Pot issu Uno spe and
Impacts of electromagnetic fields from subsea cables on sensitive species	Migratory fish & elasmobranchs	Operation & maintenance	Bundle cables together to reduce field vectors	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects	Les Pot issu Gre cab
Impacts of electromagnetic fields from subsea cables on sensitive species	Benthic invertebrates	Operation & maintenance	Bundle cables together to reduce field vectors	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects	Les Pot issu Und spe and

ect of Management Measure - Challenges

e implication of this measure may have an bact on surrounding benthic habitats and hsitive species

eation of artificial habitat may cause gregation effect causing greater impact of EMF

reased cost to project

duced possibilities of decommissioning in ure

e implication of this measure may have an bact on surrounding benthic habitats and hsitive species

eation of artificial habitat may cause gregation effect causing greater impact of EMF

certainty around the effect of EMF on benthic ecies. Hence uncertainty around the need for d efficacy of this measure

reased cost to project

duced possibilities of decommissioning in ure

ect disturbance/ loss if benthic communities

tential commercial and technical feasibility ues.

tential commercial and technical feasibility ues.

certainty around the effect of EMF on benthic ecies. Hence uncertainty around the need for d efficacy of this measure ss redundancy in system.

tential commercial and technical feasibility ues.

eater costs associated with not laying direct ble paths

ss redundancy in system.

tential commercial and technical feasibility ues.

certainty around the effect of EMF on benthic ecies. Hence uncertainty around the need for d efficacy of this measure

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Ef
						Gi ca
Impacts of electromagnetic fields from subsea cables on sensitive species	Migratory fish & elasmobranchs	Operation & maintenance	Bury or HDD cables where possible and viable	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects Reduces 'snagging risk' for vessels	Tr im se Ca wr Ac Pe
Impacts of electromagnetic fields from subsea cables on sensitive species	Benthic invertebrates	Operation & maintenance	Bury or HDD cables where possible and viable	Design feature	Reduce the level of EMF to surrounding water column and therefore any potential effects Reduces 'snagging risk' for vessels	Re Th im se Un sp ar Ca Wh Ac Pe Re

Table 8: Critical analysis of management measures related to the interaction of 'displacement'

Entanglement (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Ef
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark Operation & maintenance	Operation &	Maintain taut or adopt 'hungee'	Design feature	Remove/reduce risk of entanglement	Mo con
		maintenance	mooring lines		Regular inspections can provide operational insight into condition	Reg
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark	Operation & maintenance	Cable design with maximum bend radius	Design feature	Remove/reduce risk of entanglement	Mo con
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark	Operation & maintenance	Install tension sensors on mooring lines	Monitoring	Informs of problem with mooring lines allowing rectification Cost per unit	Ado req

fect of Management Measure - Challenges

reater costs associated with not laying direct able paths

he implication of this measure may have an npact on surrounding benthic habitats and ensitive species

an be very challenging or impossible at sites there seabed tends to be rocky

dditional expense to the project.

ermanent damage to seabed.

educed possibility of ever decommissioning. he implication of this measure may have an npact on surrounding benthic habitats and ensitive species

ncertainty around the effect of EMF on benthic becies. Hence uncertainty around the need for and efficacy of this measure

an be very challenging or impossible at sites here seabed tends to be rocky

ditional expense to the project.

ermanent damage to seabed.

educed possibility of ever decommissioning.

ffect of Management Measure - Challenges

oring design driven by technical and mmercial consideration.

gular ROV/ dive or drop-down cameras pections required

oring design driven by technical and mmercial consideration.

ditional cost and control system integration juirement.

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
						Lc tha Ur
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark	Operation & maintenance	Fishing debris detected during routine inspections of mooring lines and cables will be removed	Mitigation	Remove/reduce risk of entanglement Low cost measure, implemented as part of standard O&M procedures. Regular monitoring will benefit system performance in addition to addressing environmental risks (e.g. early detection of damage or failures in the system)	N
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark	Operation & maintenance	Ensure standard notifications of loss of fishing gear in region notified to operators. Reporting of entanglement events.	Monitoring	Good practice for emergency preparedness	Cł re
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark	Operation & maintenance	Routine inspections of mooring lines. Implement features into existing control systems to detect entanglement events.	Monitoring	Remove/reduce risk of entanglement. Likely to be required as part of the technical monitoring of the device and therefore not an additional cost	Co de
Potential for marine animals to become entangled in device mooring lines and cables	Cetaceans and basking shark	Operation & maintenance	Minimise the number of mooring lines	Design feature	Reduce risk of entanglement.	Co de

Table 9: Critical analysis of management measures related to the interaction of 'entanglement'

Entrapment (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Ef
Potential risk of entrapment within device chambers and mooring arrays	All receptors	Operation & maintenance	Regular ROV/ drop down camera surveys to establish occurrence of entrapment	Mitigation	Early detection of entrapment	Ado

Table 10: Critical analysis of management measures related to the interaction of 'entrapment'

Habitat creation (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
The introduction of infrastructure and artificial substrates will provide habitat and artificial refuges	All receptors Operation & maintenance	Operation &	Monitor near-field behaviours	Monitoring	Reduces scientific uncertainty around collision risk, displacement and other impacts	Th dif
				Increased value/ fecundity of commercially important species	Ma ec	

Effect of Management Measure - Challenges

oad from entangled animal is likely to be smaller nan the device loading on the moorings. Incertainty of the efficacy of this measure

one identified

hances of lost fishing gear being reported is portedly low

ould be a costly measure for technology evelopers

ould be a costly measure for technology evelopers

ffect of Management Measure - Challenges

ditional cost

Effect of Management Measure - Challenges

his type of monitoring can be expensive and fficult to deliver in practice

ay require additional licensing (e.g. chosounders)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
The introduction of infrastructure and artificial substrates will provide potential roosting habitat	Roosting birds	Operation & maintenance	Monitor use of device as a roosting platform	Monitoring	Reduces scientific uncertainty around collision risk, displacement and other impacts Monitoring is relatively inexpensive to carry out	Da
The introduction of infrastructure and artificial substrates may generate additional habitat diversity.	Benthic	Operation & maintenance	Structure colonisation and biofouling surveys	Monitoring	Informs understanding of potential for increased prey availability and ecological diversity	Co

Table 11: Critical analysis of management measures related to the interaction of 'habitat creation'

Introduction of marine non-native species (MNNS; relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
Potential for introduction of MNNS which can have an adverse impact on the native species at the site	All receptors	All phases	Compliance with all relevant guidance (including IMO guidelines) regarding ballast water management and transfer of non-native species	Compliance	Reduce/remove risk of transfer and settlement of non-native species	No
Potential for introduction of MNNS which can have an adverse impact on the native species at the site	All receptors	All phases	Establish and implement a Biofouling Management Plan	Mitigation	Reduce/remove risk of transfer of non- native species	La
Potential for introduction of MNNS which can have an adverse impact on the native species at the site	All receptors	All phases	Adhere to appropriate measures when jettisoning ballast water	Design feature	Reduce/remove risk of transfer of non- native species	No
Potential for introduction of MNNS which can have an adverse impact on the native species at the site	All receptors	All phases	Source vessels locally	Design feature	Reduce/remove risk of transfer of non- native species	No

Table 12: Critical analysis of management measures related to the interaction of 'introduction of marine non-native species'

Lighting (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Ef
Potential for lighting to adversely affect nocturnal and migratory species	Seabirds	Operation & maintenance	Consider type, colour and use of lighting during design and consultation with navigational stakeholders	Design feature	A targeted lighting plan may have the potential to reduce impacts on sensitive species but navigational interests need to be considered at all times	Nav ove

⁵ Data mortgage is the concept of generating data more quickly than it can be analysed

Effect of Management Measure - Challenges

ata mortgage⁵

ost associated with monitoring

Effect of Management Measure - Challenges

one identified

ack of industry specific guidance

one identified

one identified

ffect of Management Measure - Challenges

vigational safety considerations will take priority er implementation of ecological aspects

Potential for lighting to adversely affect nocturnal and migratory species	Seabirds	Operation & maintenance	Monitoring effects on animals.	Monitoring	Reduce scientific uncertainty	Ca
--	----------	-------------------------	--------------------------------	------------	-------------------------------	----

Table 13: Critical analysis of management measures related to the interaction of 'lighting'

an be difficult to detect change as a result of teraction as opposed to natural variability

Loss of seabed habitat (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Effe
Direct loss of protected or sensitive sub- littoral seabed communities due to the presence of devices associated moorings or support structures on the seabed	Benthic invertebrates and demersal fish	Construction & decommissioning	Micrositing of offshore infrastructure to avoid sensitive habitats.	Design feature	This could reduce/remove effects on sensitive habitats. Low cost measure at single device or small-scale array.	Nor
Direct loss of protected or sensitive sub- littoral seabed communities due to the presence of devices associated moorings or support structures on the seabed	Benthic invertebrates and demersal fish	Construction & decommissioning	Site selection to avoid sensitive or protected sub-littoral seabed communities	Design feature	This could reduce/remove effects on sensitive habitats.	Nor
Direct loss of protected or sensitive sub- littoral seabed communities due to the presence of devices associated moorings or support structures on the seabed	Benthic invertebrates and demersal fish	Construction & decommissioning	Minimise footprint of anchors / foundations	Design feature	This could reduce effects on sensitive habitats	May
Direct loss of protected or sensitive sub- littoral seabed communities due to the presence of devices associated moorings or support structures on the seabed	Benthic invertebrates and demersal fish	Construction & decommissioning	Cable protection management measures to ensure that any rock placement that is required will be kept to a minimum to reduce seabed disturbance	Design feature	This could reduce effects on sensitive habitats	Add
Direct loss of protected or sensitive sub- littoral seabed communities due to the presence of devices associated moorings or support structures on the seabed	Benthic invertebrates and demersal fish	Construction & decommissioning	Use of local materials in cable armouring		Lost seabed is replaced with same material. Minimises loss of habitat	Nor

Table 14: Critical analysis of management measures related to the interaction of 'loss of seabed habitat

Pollution impacts (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Effe
Potential for accidental or unplanned events which could lead to pollution of the marine environment	All receptors	All phases	Physical Containment systems including bulk heads, closed circuit systems, pressure relief systems, bunding	Design feature	Reduces risk of pollution escaping from structure.	Nor
Potential for accidental or unplanned events which could lead to pollution of the marine environment	All receptors	All phases	Material selection - lubricants, coolants, hydraulic fluids etc. selected with low ecotoxicity levels and biodegradable	Mitigation	Reduces/removes risk of pollution from materials which may have escaped structure.	Use per fluic

ect of Management Measure - Challenges
ne identified
ne identified
y impact technical considerations
ditional cost
ne identified

ect of Management Measure - Challenges

ne identified

e of lower toxicity materials may compromise formance, or impact other technical issues (e.g. d changes).

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	Ef
Potential for accidental or unplanned events which could lead to pollution of the marine environment	All receptors	All phases	Where rock placement is used, ensure clean rock is used	Mitigation	Reduces/removes risk of pollution from materials	No
Potential for accidental or unplanned events which could lead to pollution of the marine environment	All receptors	All phases	Management: Establish and implement a Pollution Control Plan / Ship Oil Pollution Emergency Plans (SOPEPs) Compliance with International Maritime Organisation (IMO) and Maritime Coastguard Agency (MCA) codes for the prevention of pollution.	Mitigation	Reduces risk of any pollution event and ensures that contingency plans are in place. Demonstrates compliance with environmental management systems.	No

Table 15: Critical analysis of management measures related to the interaction of 'pollution impacts'

Underwater noise (relevant to wave & tidal)

Interaction	Receptor	Phase of Project	Environmental management measures	Management measure category	Effect of Management Measure - Advantages	E
The potential effects from underwater noise generated during installation/ construction (excluding piling)	Marine mammals and seabirds and fish	Construction & decommissioning and pre- construction baseline surveys (e.g. Geophysical works)	Avoid/limit 'noisy works' within close proximity to sensitive sites i.e. known seal haul outs and important cliff nesting sites, during sensitive periods, defining appropriate clearance distances where necessary.	Mitigation	This could reduce potential effects on sensitive species during sensitive periods.	This e.g. spe
The potential effects from underwater noise generated during installation/ construction (excluding piling)	Marine mammals and fish	Operation & maintenance	Measure noise generated by device(s) during operation to better understand the potential effects on sensitive species	Monitoring	Measured noise levels can be correlated with threshold values of relevant species and baseline noise levels of the site to determine impact and need for adaptive management measures.	Car of n Dat exp
The potential effects from underwater noise generated during installation/ construction (excluding piling)	Marine mammals and fish	All phases	Limit vessel speed	Mitigation	Reduces potential effects. Relatively low-cost measure.	Nor

Table 16: Critical analysis of management measures related to the interaction of 'underwater noise

fect of Management Measure - Challenges

one identified

one identified

Effect of Management Measure - Challenges

is could increase project construction timescales . if continuous drilling time is restricted or ecific periods need to be avoided

n be complex and costly to undertake this type monitoring in high energy environments

ta and analysis have requirement for acoustic perts.

ne identified

4 Conclusions

As can be seen in the tables above, there is a requirement for further monitoring and testing of many of these environmental management measures to reduce uncertainty around their efficacy. The reason for this is the relatively low number of deployments in the wave and tidal industry to date, leading to limited opportunities to utilise these management measures, collect data on their efficacy and to better understand the advantages and challenges associated with their implementation, particularly within the context of pre-commercial and commercial projects. There has also been a lack of specific funding to support this work, and hence the SEAWave project as funded by EASME through EMFF is vital in reducing this uncertainty.

It is also flagged during the interviews that study of these interactions and hence efficacy of management measures can be complex. Differentiating between natural variability and potential direct impacts of the introduction of a man-made structure often requires significant statistical power and can present a challenge when working on small scale arrays or single device deployments.

Further data collection will be required to gain a more in depth understanding of the interactions between marine energy devices and marine animals and habitats. Additionally, it is vitally important that data is analysed and reported in order for others to learn from this. It has been noted that this is also important where management measures have not worked as planned. Reporting of this will aid in reducing uncertainty and improving on these management measures in future developments.

Two general environmental management measures were raised during the consultation process that should be considered in relation to all impacts:

- The use of an Ecological Clerk of Works is often required as a licence/consent condition and one of the key purposes of this role is to ensure the implementation of any management measures that were proposed in the consenting reports such as Environmental Impact Statement or Environmental Management Plan⁶ or those that are set out in Environmental Management Plans/Construction Environmental Management Document.
- 2. Baseline data gathered to inform project design and consenting activities could be used alongside data and information collected during construction, operation, maintenance and decommissioning/removal to reduce uncertainty around potential effects and the efficacy of environmental management measures.

It is acknowledged that there is more work to do in order to better understand the interactions between marine energy developments and marine animals and habitats; and the management measures to minimise the deleterious effects of these interactions. However, it is also acknowledged that it will be challenging to ever show that there is no negative impact on marine animals and habitats as there will always be 'unknown unknowns' and it is impossible to prove that something will 'never' occur.

At this time, the partners of the SEA Wave project, in collaboration with ORJIP Ocean Energy would like to actively encourage feedback on the information presented in this report.

⁶ Also known as a Project Environmental Monitoring Programme

If you have additional experience in this field and would like to add to this critical analysis, please contact the team using the information below:

- SEAWave WP2 Leader & ORJIP OE Secretariat: Jennifer Fox, Aquatera Ltd Jennifer.fox@aquatera.co.uk
- SEAWave Project Manager: Caitlin Long, EMEC Caitlin.long@emec.org

This project has been co-funded by the European Maritime and Fisheries Fund EMFF) of the European Union. The contents of this document reflect only the (author's view. EASME is not responsible for any use that may be made of the information it contains.

www.seawave-emff.eu