

Benthic Habitat Surveys for Informing Renewable Energy Development in the Pacific Northwest Sarah K. Henkel **Oregon State University**

Work presented here sponsored largely by BOEM with additional support from the U.S. Department of Energy and the Oregon Wave Energy Trust

Objectives for Baseline Benthic Research

- Describe the benthic habitats and communities of organisms in areas of potential marine renewable energy development in the Pacific Northwest
- 2. Develop an understanding of species-habitat relationships
- 3. Determine variation in habitat characteristics and benthic species **across space** in the region
- 4. Determine variation in benthic species **over time**

Grays Harbor Spatial (and quasi-Temporal) Washington Study: BOEM Regional ape Falcon Nehalem Tillamook Bay Cascade Head Infaunal invertebrates in sedimentary habitats and macro-inverts in rocky habitats Newport Cape Perpetua Oregon ♦ Northern California to central Siltcoos Washington Coos Bay \diamond Federal waters only Coquille Cape Blanco \diamond Depth range of ~40 to 130 m BURFALLOF OCEAN ENERGY MANAGEMENT \diamond All sites approximately the same area sampled ♦ Sampling intensity represents depth California proportion Eureka - Burnboldt Bay CapeMendocino Compare infaunal data to 2003 EPA survey Compare reef data to 1990s *Delta* surveys Cape Vizcaino Fort Bragg

Temporal Study: Benthic Monitoring at the OSU-OTF Site

Infaunal & epifaunal invertebrates and fish in sedimentary habitats

				Newport-North 40m Newport-North 50m	
	Core	Trawl	Video		Stations inside
May 2010			~	人在方法教授	potential development area
June 2010	v	 		44697764 -124148319	44.699034, 124.108056,
August 2010	v	~	~		MOTB-North 40mMOTB-North 30m
October 2010	~	~		MOTB-North 50m •	OTE
February 2011		 	~		Footprint
April/May 2011	v	~	~		5
June 2011	V	V	~	Area	
August 2011	V	V		(1 nm²)	44.655299 174105439
October 2011	~	~	~	44.65403, -124.145677 MOTB-South 50m	MOTB-South 40m
December 2011	V	V			Stations outside
June/July 2012 (Before)	V	~	~	NEPA Analysis	development area
Aug/Sept 2012 (During)	V	~	~	Area (6 nm²)	
October/Nov 2012 (After)	V	~		Newport-South	40m • Newport-South 30n

Baseline Study (2010 – 2011 data) Complete and Available at www.oregonwave.org

High Resolution Mapping

Conducted by C. Goldfinger lab (OSU-CEOAS)

Multi-beam sonar mapping (bathymetry)

Acoustic backscatter (substrate type)

Groundtruth with Grab Samples

Water Column Sampling

CTD cast at each station measures depth, temperature, salinity, dissolved oxygen, chl fluorescence, pH

Infauna and Sediment Sampling

0.1 m² Grey-O'Hare box core

Analyze sediment for grain size, total organic carbon

Sieve through 1.0 mm mesh

Identify infauna in the lab

Community Analysis (SIMPER)

BEST Bio-Env = 0.702: lon, z, % sand, % gravel, mgs

Community Patterns with Depth

Habitat Suitability Modeling

Infaunal Invertebrate Summary

- \diamond There appears to be a break in the infaunal community at 70–80 m depth
- \diamond Species diversity peaked at ~95 m depth and ~120 μm median grain size
- Local spatial heterogeneity was higher at shallower sites (usually with larger grain size)
- If the depth and grain size of a site are measured, one may be able to make good predictions of the species assemblage likely to be found there, within a region

In central Oregon state waters, infaunal invertebrate assemblages have not varied across seasons (but may have longer term variability)

Baseline/monitoring sampling may be conducted 1x/year

Epifaunal Sampling - Reef Surveys

Submersible Delta

- Used for historic dives of the 1990s
- Camera attached on starboard
- Camera equipped with two 20 cmapart sizing lasers
- Equipped with sensor that measured temperature & depth every second

Remotely operated vehicle (ROV) Hammerhead

- Used for dives in 2011&12
- Two cameras: forward & downward
- Sizing lasers
- Equipped with CTD
- Equipped with navigator beam

Video Analysis

- + Each *Delta* dive was watched three times:
- 1. Substratum Identification based on grain size class and relief

Each patch was coded with two letters – first letter indicating primary (50 - 80% of cover) and second letter indicating secondary (20 - 50% of cover)

- 2. Sessile Invertebrate Identification and Count
- 3. Motile Invertebrate Identification and Count
- Each ROV Hammerhead video was watched twice (steps 2 and 3 were combined for these videos)
- + All invertebrates ≥ 5 cm were counted and identified to lowest possible taxonomic

Epifaunal Invertebrate Summary

- Two major substratum groups held different macroinvertebrate assemblages: moderate to high relief rocky habitats and low-relief fine sediment habitats
 - The majority of macroinvertebrate taxa (highest diversity) was associated with high-relief rocks
 - ♦ These taxa were further differentiated between flat versus ridge rocks
- Low-relief fine sediment habitat was most often associated with motile invertebrates
 - Within this habitat it appeared that fine-sediment substrata mixed with mud, boulders, or gravel each yield unique macro-invertebrate associations versus those found on uniformly mud or sand substrata.
- Latitude/temperature also were correlated with variation in assemblages, indicating regionally distinct macroinvertebrate communities along the continental shelf

Acknowledgements

Funding:

Collaborators: Chris Goldfinger (OSU) & Brian Tissot (WSU)

Field and Lab Assistance:

♦ Kristin Politano
♦ Tim Lee
♦ Nate Lewis
♦ Stephanie Labou
♦ Elizabeth Lopez
♦ Danny Locket
♦ Chris Romsos
♦ Bob Hairston-Porter

♦ MARE ROV Team
 ♦ R/V Elakha
 ♦ R/V Pacific Storm