Active acoustics in turbulent environments, particularly around energy devices

Experiences of the Zydlewski Lab, University of Maine Gayle Zydlewski, Haley Viehman, Garrett Staines, Haixue Shen

Problems, Solutions, and Future Directions

Turbulence and other Noise

- 1. Noise
 - Electrical/system interference noise (e.g., DIDSON, ADCP, boat systems)
 - Random interference (e.g., boat echosounders etc.)
 - Interfering objects (buoy lines, non-animal)
- 2. Turbulence
 - Air entrainment in the top 10 m
 - Air entrainment to mid-water column
 - Air entrainment surface to bottom

1. NOISE

-System Interference

ES 60 single beam & DIDSON / **ADCP**

Solutions

- Eliminate source
 - Do not use the DIDSON / **ADCP**
 - Duty cycle
- DIDSON
 - Use a pulse duration of 0.512 ms or higher.

18.9

42.9 44 0

- Treat as bad data regions (exclude those sets of pings)
- Intermittent noise removal ٠ method in Echoview
- Other?

System Interference

Electrical Noise (source unknown)

Solutions

- Isolate issue and eliminate
- Use DC power only
- Grounding
- Apply threshold (e.g., TVG)
- Remove from dataset as bad data region
- Other?

Random: Other boat's depth-sounder Treat as above, but presence is random

Objects that look like fish but aren't

Solutions Fish Manually exclude as bad region Model the noise and apply to full dataset Rope? Other? (not fish) 40.0 80.0 Fish Solutions may be dependent on dataset: long-term vs. 24 h 20.0 5/8/2013 3:42 (ebb tide), side-looking at TidGen[®] site 10.0

Turbulence Entrained air at surface

Entrained air: most of water column

Possible Processing/Analysis solutions:

- Do not collect data during highly turbulent periods
- Take out bad regions by hand
- Automated techniques (re-sampling or school detection)
 - still needs manual ground-truthing
- Other?

Turbulence Exclusion

John Horne and Dale Jacques

Potential Processing Approaches:

- 1. Ignore (depth exclusion)
- 2. Threshold
- 3. Single targets > threshold or SNR
- 4. Frequency differencing (permutations)
- 5. 'School detection' parameters

Applications:

- 1. Marine Renewable Energy: pelagic nekton characterization (strong turbulence)
- 2. Bio-Physical coupling: Hypoxia, fish, zooplankton distributions (mild turbulence)
- 3. Predator-prey interactions: seabirds and fish (strong through mild turbulence)

Echogram Processing:

- 1. 120 kHz, passive noise removal, -75 dB threshold
- 2. Surface exclusion
- School detection' (black outline) below surface exclusion
- 4. Bitmap Mask

Left: Strong, whole water column

Right: Medium, half water column

Mixed Conditions: whole water column, half water column, other scatterers

Constraints

- 1. -75 dB threshold: if lower, then contiguous pixel selection messes up (chosen through trial and inspection)
- 2. Frequency-dependence of turbulence (i.e. bubble size)
- 3. Fish or zooplankton aggregations intersecting with surface or surface exclusion line
- Deeper current turbulence *not* intersecting with surface (i.e. chord intersection)

Frequency-dependence

DISCUSSION...choose a topic

- 1. Noise
 - Electrical/system interference noise (e.g., DIDSON, ADCP, boat systems)
 - Random interference (e.g., boat echosounders etc.)
 - Interfering objects (buoy lines, non-animal)
- 2. Turbulence
 - Air entrainment in the top 10 m
 - Air entrainment to mid-water column
 - Air entrainment surface to bottom

Notes